A Study on the Properties of Concrete for the Improvement of Early Strength

Seong Wan Kim*, Chan Yong Sung* and Chong Kug Seo**

SUMMARY

This study was performed to obtain the basic data which can be applied to improve the early strength of concrete.

The results obtained were as follows;

1. In case that water reducing-set accelerating agent was added 0.75% of the weight of cement, the weight of water was reduced 10%.
 And CaCl₂ did nearly not have an effect on the w/c ratio.

2. Compressive strength and tensile strength increased 25%, 43%, respectively, in case that CaCl₂ was 2.0% of the weight of cement, and showed 120%, 140%, respectively, in case that water reducing-set accelerating agent was 0.75% of the weight of cement.

3. In case of steam curing at 60°C, the strength increased with the ages. At 100°C, the increase of strength in age was two times as compared with plain concrete. After 7 ages, the strength was similar to plain concrete.

4. The relationship between compressive strength and tensile strength was linear and was highly significant in cases of plain concrete, CaCl₂ concrete, C-W concrete, steam cured concrete, respectively.

* 農科大学 農工学科 (Dept. of Agricultural Engineering, Coll. of Agriculture, Chungnam Nat'l Univ., Taejeon, Korea)

** 忠南大学校 大学院 (Graduate School, Chungnam Nat'l Univ., Taejeon, Korea)
穀

2000年前，Greece, Roman人들은火山灰의堆積에 의해 생긴蒸気養生되는석재와 모래의 혼합물로 쓰던 물의浸蝕作用에 전달될 수 있는mortar가 된다는 것을 알았으며，1,2) 1824년영국의 벤들로인Joseph Aspdin이석회석과 석토를 혼합하여 볼트로 만든 것이 포틀랜드시멘트의 시조이자 콘크리트가 발명되었다. 이 뒤로 인해 포틀랜드시멘트는 더욱 많이 사용되게 되었다.

이와 같이 시멘트의 수요로 인해製造法와성질이 많이 개량되어早期이강성시멘트의발명으로土木建設事業의발전을 가져오게 되었다.

한편，Hickey1)는양화장수축 초기정도는항상이라거나기정공도에 있어서는약간의강도증가가 있다고 하였고，富士호와 규모와-시멘트가나은富士호에서 초기정도가 더 증가함으로써최저기온은2℃~4℃의진점공사를 할 때 사용하 여시멘트증상의1/2를충분히고갈라비나시멘트나 초기양성이 사용할 수 있다고 하였다.

1969년콘크리트標準解説集28)에서는양화장수축의참가율은시멘트중량의1%를규정하였고，U.
S.B.R에서는양화장수축를정해진비율에사용하 면 콘크리트의부식은없지만높은울-시멘 트비율 경우에는 약간의腐蝕이발생한다고 하였다.

한편，混和材구 롯콘크리트에참가하면위의수량，시멘트비율，水和熱，容積膨脹， 등의강 소와，強度，耐蝕性，耐久性，凝結時間，에 대한 抵抗性，單位水量 등의 증가 및 Workability, 사용，龟裂，防止单，施工性，和水和作用，早期熱膨脹，凝結時間，短縮 등의改善効果가 있는 것으로 알려졌다3-6).

또한ACI5)에 의하여，蒸気養生製品에 관련 연구가 보고된 바 있고 최근에 이용되는축장양방법에는，蒸気養生，電気養生，Oil養生，高圧波養生 등이 있으며 이 가운데 蒸気養生이 많이 쓰여지고 있다. 蒸気養生에 의한 콘크리트의르스트도와의 변형은常温에서 형성지는 보통의 습윤양성과 비슷하야 마르다는 것이周知의 사실이다.

Raymond E.Davis는 롤크리트의 초기제형이 롤크리트가 얼마나 영구적인가를 결정하는데 중요한 요소라고 하였고 치간과 공명에 대한 구조물의 설계에 안전을 확보하는 요소라 하였 다.

Verbeck과 Helmuth1)는蒸気養生에 있어서 초기의 높은 온도가 장기 강도에 영향을 미치는 것은水和의 급격한 속도가 많은 기포를 날기 때문에 일어나는 류로 시멘트의 성질을 바꾸게 할 수 있다고 하였다. 그리고 콘크리트 속의 공기가 콘크리트보다 더 높은熱膨脹係數를 가지고 있으므로 濃度의 손실이 일어나다고 하였다.

이와 같이 초기에 높은 온도의 가열은 습윤양성에 비하여 1/3 정도의 장기 강도에 손실이 일어나다고 하였다.

Saul1)은疑結時間의 溫度는 장기 강도의 영향에 크지 미미로 지연시간과 온도상승도가 적당한 것으로 하였으며 암생온도가38℃,54℃, 74℃, 85℃일때 각각2hr, 3hr, 5hr, 6hr의 지연 시간을 갖고，온도상승도는1시간당22℃， 23℃의 비율로 가열해야 하며 총 cycle은18hr. 이라야 한다고 하였고 고갈라비나 시멘트나 조짐제와 같이蒸気養生은 할 수 없다고 하였다.1,7,18)

한편，콘크리트標準解説集30)에서는콘크리트 배한 후 2-3시간 후부터蒸気養生한 후 1시간
당 20℃이하로 온도상승도를 하고，최고온도는
65℃이하로 규정하고 있다.

따라서本研究는 콘크리트의疑結硬化를 촉진 시킴으로써 초기강도를 최대한으로 높이려 암생기 건을 단축시킴으로써 경비의 경감과 통학을 방지한 목적으로早場波水分散剤를 시멘트， 중량의 0.25%， 0.5%， 0.75%， 1.0%， 암생간은 1%， 1.5%， 2%， 2.5% 첨가하였으며蒸気養生(60℃，100℃)만 콘크리트와 보통시멘트 콘크리트와의 疲弱特性을 비교 검토하여 이를 결과를 콘크리트 強度의 早期判斷에 이용하고 콘크리트의 효과적인 사용을 위한基礎資料를 마련하기로 본 시험을 하였다.

材料及方法

1. 使用材料

가. 시멘트
보통포틀랜드 시멘트를 사용하였으며 그 化学
成分과 物理的 性質은 Table 1,2와 같다.
나) 骨材
骨材는 강자강, 강모래를 使用하였고 骨은 骨

Table 1. Chemical composition of cement used (%)

<table>
<thead>
<tr>
<th></th>
<th>CaO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>SO₃</th>
<th>Ig. loss</th>
<th>C₃A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>62.2</td>
<td>21.0</td>
<td>5.7</td>
<td>3.6</td>
<td>2.7</td>
<td>2.2</td>
<td>0.8</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 2. Physical properties of cement used

<table>
<thead>
<tr>
<th>Specific gravity</th>
<th>Finess (cm²/g)</th>
<th>Setting time (min)</th>
<th>Compressive strength (kg/cm²)</th>
<th>Tensile strength (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>initial</td>
<td>final</td>
<td>7 days</td>
</tr>
<tr>
<td>3.14</td>
<td>3.170</td>
<td>320</td>
<td>450</td>
<td>238</td>
</tr>
</tbody>
</table>

Table 3. Physical properties of fine & coarse aggregate used

<table>
<thead>
<tr>
<th>Item</th>
<th>Specific gravity</th>
<th>Absorption rate (%)</th>
<th>Finess modulus</th>
<th>Unit weight (t/m³)</th>
<th>Abrasion rate (%)</th>
<th>Organic impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine aggregate</td>
<td>2.44</td>
<td>2.40</td>
<td>2.61</td>
<td>1.53</td>
<td>-</td>
<td>Nil</td>
</tr>
<tr>
<td>Coarse aggregate</td>
<td>2.76</td>
<td>1.62</td>
<td>7.04</td>
<td>1.63</td>
<td>23.86</td>
<td>Nil</td>
</tr>
</tbody>
</table>

Fig.1. Gradation curve of fine and coarse aggregate.

-347-
다) 混和剤

混和剤는 조강감수분산제를 사용하였으며 그 특성은 Table 4와 같다.

라) 影響箇所

本 試験에 使用한 影響箇所은 討論되고 있는 工業用으로 그 순도는 72%이었으며 接合部은
 순도를 100%로 환산하여 使用하였다.

2. 試験方法

가) 콘크리트의 配合

本 試験에 使用된 콘크리트는 單位시멘트량을 300kg/m³, 溶解度 7.5±1cm에 해당되도록
물-시멘트비를 定하고, 이에 조강제의 接合部을 변화시키면서 試験하였으며 콘크리트의 配合
設計는 Table 5와 같다.

나) 水-시멘트比 試験

KSF 2402의 규정에 順하였으며 조강제 본, 接合部로 溶解度 7.5±1cm로 配合한 직후 5
초 후의 溶解度를 측정하여 물-시멘트비를 산
출하였다.

다) 供試體의 製作 및 養生

壓縮 및 引張強度 試験用 供試體의 製作方法은
KSF 2403에 順하였으며 報報養生은 供試體를
製作하여 24 hr. 경과후 닫어서 3hr 경과후 Fig. 2와 같이 60℃와
100℃에서 소정시간 蒸氣養生을 한 다음 탈영
하여 水中에서 소정의 養生까지 養生하였다.

라) 強度試験

KSF 2405와 KSF 2423에 順하여 壓縮強度
와 引張強度 試験을 하였으며 機械는 더지랄 응
력측정기를 使用하였다.

| Table 4. Character of water reducing agents |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Item | Type | Principial ingredient | Form material | Specific gravity |
| C.W. | Water reducing | Lignosalphonates | Red brown liquide | 1.31 |

| Table 5. Design of mix proportion in concrete |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Item | Cement (kg/m³) | Admix (%) | W/C (%) | Slump (cm) | S/A | Weight per unit (kg/m³) |
| Weight per unit | Water | Sand | Gravel | | |
| Plain | 300 | 0 | 66.7 | 8.5 | 40.4 | 200 | 765 | 1130 |
| Steam curing | 300 | 0 | 66.7 | 8.5 | 40.4 | 200 | 765 | 1130 |
| CaCl₂ | 300 | 1.0 % | 66.7 | 8.4 | | 200 | | |
| | 1.5 % | 65.6 | 8.2 | 40.4 | | 197 | 765 | 1130 |
| | 2.0 % | 64.6 | 8.0 | | | 194 | | |
| | 2.5 % | 63.5 | 8.1 | | | 191 | | |
| | 0.25% | 63.5 | 7.8 | | | 191 | | |
| C.W. | 300 | 0.5 % | 61.5 | 7.4 | 40.4 | 183 | 765 | 1130 |
| | 0.75% | 60.4 | 7.0 | | | 181 | | |
| | 1.0 % | 59.4 | 6.5 | | | 178 | | |
結 果 및 考察

보통시멘트 콘크리트와 混和剤를 採用한 콘크리트 및 蒸気養生한 콘크리트의 材齡別, 壓縮 拉 張強度의 試驗結果를 비교하면 Table 6과 같다.

1. 壓縮強度

 가. 보통시멘트 콘크리트와 影響於水泥 添加된 콘크리트의 強度比較

 影響於水泥의 添加量에 따른 材齡別 壓縮強度
 試驗結果는 Table 6 및 Fig.3과 같이 影響於水泥 添加 2.0 %에서 最大值를 나타내고 있으며
 2.5 % 以上에서는 2.0 %보다 增加하여 強度가 將大하는 現象을 나타내고 있다. 材齡 7일 強度
 가는 強度增加率이 크게 나타났으나, 7일 以
 後에는 增加率이 鈍化되며 增加傾向을 보 며 있다.

 2.5 %의 添加量에 約 7.5 %의 增加
 試験結果는 보통시멘트 콘크리트보다 材齡 1일에서 64
 %, 材齡 7일에서 30 %, 材齡 28일에서 25 %의
 增加로써 影響於水泥 添加에 依한 增加強度는
 大部分 初期에 크게 일어날 수 있다. 初期
 強度가 開始하여 7일 以
 後에는 7일 以
 後에는 增加傾向을 보 며 있다. 이는 小野 27)의
 結果로서
 材齡 1일, 7일의 強度는 보통시멘트 콘크리트보다
 28 ~ 70 %의 增加強度가 유사한 결과라고 생각된다.

 나. 보통시멘트 콘크리트와 早強減水分散剤를
 添加한 콘크리트의 強度 比較

Fig.2. Steam curing.

Fig.3. Relation between age and compressive strength for adding of CaCl₂.
| Item | Adding (%) | σ_1 | Compressive strength (kg/cm²) | % | Tensile strength (kg/cm²) | % | σ_7 | Compressive strength (kg/cm²) | % | Tensile strength (kg/cm²) | % | σ_{28} | Compressive strength (kg/cm²) | % | Tensile strength (kg/cm²) | % |
|------------|------------|------------|-------------------------------|---|--------------------------|---|------------|-------------------------------|---|--------------------------|---|--------------------------|---|--------------------------|---|--------------------------|---|
| CaCl₂ | 0 | 61.4 | 100 | | 9.1 | 100| 168.4 | 100 | | 17.6 | 100| 213.8 | 100| 24.2 | 100| |
| | 1.0 | 73.6 | 120 | | 9.9 | 109| 191.8 | 114 | | 22.8 | 127| 243.8 | 114| 29.1 | 121| |
| | 1.5 | 95.9 | 156 | | 12.6 | 138| 199.8 | 118 | | 25.2 | 140| 250.9 | 111| 32.3 | 134| |
| | 2.0 | 100.7 | 164 | | 13.3 | 146| 218.3 | 130 | | 28.6 | 158| 267.1 | 125| 34.3 | 143| |
| | 2.5 | 95.4 | 155 | | 12.1 | 132| 202.6 | 121 | | 26.2 | 145| 265.5 | 124| 33.3 | 139| |
| C. W. | 0 | 61.4 | 100 | | 9.1 | 100| 168.4 | 100 | | 17.6 | 100| 213.8 | 100| 24.2 | 100| |
| | 0.25 | 74.3 | 121 | | 10.5 | 115| 171.2 | 102 | | 21.5 | 119| 219.9 | 103| 28.8 | 120| |
| | 0.50 | 84.7 | 138 | | 11.3 | 124| 180.4 | 107 | | 23.0 | 128| 230.1 | 108| 31.0 | 129| |
| | 0.75 | 107.8 | 176 | | 15.0 | 165| 194.5 | 115 | | 23.9 | 133| 256.3 | 120| 33.8 | 140| |
| | 1.00 | 100.3 | 163 | | 13.5 | 148| 183.3 | 109 | | 23.1 | 128| 245.3 | 115| 32.5 | 135| |
| Steam curing | 23 ± 2°C | 61.4 | 100 | | 9.1 | 100| 168.4 | 100 | | 17.6 | 100| 213.8 | 100| 24.2 | 100| |
| | 60°C | 102.8 | 176 | | 13.3 | 146| 177.9 | 106 | | 18.8 | 104| 263.7 | 123| 28.0 | 117| |
| | 100°C | 126.2 | 206 | | 14.7 | 161| 153.2 | 91 | | 16.6 | 92 | 199.6 | 93 | 21.7 | 90 |
전, 성, 徐: 早期強度 增進을 위한 콘크리트의 強度特性에 關한 實験的 研究

Fig. 4. Relation between age and compressive strength for adding of C.W.

Fig. 5. Compressive strength versus age of plain and steam curing concrete.

또한, 60°C로 蒸氣養生한 콘크리트의 強度는 보통시멘트 콘크리트보다 材胚 1일, 7일, 28일에서 각각 76%, 6%, 23%의 強度增加가 나타났고, 100°C로 蒸氣養生한 콘크리트에서는 보통시멘트 콘크리트보다 材胚 1일에서는 106%의 強度가 증가되었으나 材胚 7일, 28일에서는 오히려 10% 정도의 強度減少 現象을 보였다.

이와 같은 결과는 성[15]은 高溫일수록 初期強度는 促進되는 반면 長期強度는 감소하고 70°C 정도의 養生은 지속적인 強度增加를 보였다고 한다. 연구내의 高溫養生時の 初期에는 급속한 水和作用으로 인해 強度는 增進되나 材胚 7일 이후의 長期強度는 水との양생한 보통시멘트 콘크리트의 強度와 비슷한 경향을 나타냈다고 한 Saul[1]의 연구와 유사한 결과가 생각된다. 한편, 水結時期은 長期強度에 미치는 영향이 크므로 蒸氣養生하기 전 적당한 水結時期이 있어야 하는데 Saul의 연구결과인 Fig.5에서 보는 바와 같이 水結時期가 蒸氣養生에서 나온 영향이 나타나는 것을 알 수 있다.

다. 보통시멘트 콘크리트와 蒸氣養生한 콘크리트와의 強度比較

보통시멘트 콘크리트와 蒸氣養生한 콘크리트와의 壓縮強度 試験結果는 Table 6 및 Fig.5와 같이 60°C의 蒸氣養生에서는 材胚이 증가함에 따라 強度의 增進이 있었으나 100°C에서는 材胚 1일의 強度는 보통시멘트 콘크리트보다 크게 나타났으나 材胚 7일 이후에는 보통시멘트 콘크리트와 비슷한 경향을 보였다.
2. 引張強度

가. 보통시멘트 콘크리트와 영화강습을 추가한 콘크리트와의 強度比較

영화강습의 添加量에 따른 材齡別 引張強度 試驗結果는 Table 6 및 Fig.8과 같이 영화 강습 添加量이 2.0%에서 最大値를 나타내고 있 으며 2.5%에서는 흔히 強度가 감소하는 現象 을 나타내고 있어 이러한 結果는 壓縮強度와 일치되는 現象을 나타내고 있다.

또한, 최적의 영화강습을 점가한 콘크리트는 보 통시멘트 콘크리트보다 材齡 1~7일, 28일에서 각 각 46%, 58%, 43%의 強度增加가 있었으며 長期

Fig. 6. Effect of delay in steam curing on the early gain of strength with maturity.

Fig. 7. Compressive strength versus age of plain, CaCl₂, C.W and steam curing concrete.

Fig. 8. Relation between age and tensile strength for adding of CaCl₂.
금 씨, 성 씨: 早期強度 增進을 위한 콘크리트의 強度特性에 関하실 實験的 研究

材質으로 잔수록 強度의 增加率은 鉻化되는 現象을 나타냈다.

이러한 결과는 염화칼슘의 첨가량을 시청 및 콘크리트 중
량의 1%로 규정하고 파다사용시에에 급결현상을 일으켜 強度가 감소하여 硬化하기 전에 형광을 일
으킨다고 한 콘크리트 표준해설(28)의 연구와 유사
함을 보이고 있다.

나. 보통시멘트 콘크리트와 早強減水分散剤을
添加한 콘크리트와의 強度比較

早強減水分散剤의 材質別에 따른 引張強度의
試験結果는 Table 6 및 Fig. 9와 같이 引張強度는
壓縮強度에서와 같이 添加量 0.75%에서 最
大値를 나타내고 있으며 콘크리트 표준해설(28)
에서는 0.5%를 규정하였으며 1% 이상을 초과해
서는 안된다고 하였다.

또한, 早強減水分散剤를 첨가한 콘크리트는 보
통시멘트 콘크리트에 비하여 材質 1日, 7日, 28
日에서 각각 65%, 33%, 40%의 強度增加가 있
으며 長期材質으로 잔수록 強度增加率이 감소
하는 경향을 보였으며 급속한 수화작용으로 인
해 초기에 높은 강도를 나타내고 있다.

다. 보통시멘트 콘크리트와 蒸気養生 콘크리
트와의 強度比較

![Fig.9. Relation between age and tensile strength for adding of C.W.]

![Fig.10. Tensile strength versus age of plain and steam curing concrete.]

보통시멘트 콘크리트와 蒸気養生 콘크리트와의
引張強度試験結果는 Table 6 및 Fig. 10과 같이
이 60℃로 蒸気養生한 콘크리트는 壓縮強度와
같이 보통시멘트 콘크리트보다 계숙적인 強度增
加現象을 나타내고 있으나 蒸気養生 100℃에서
는 材質 7日에 보통시멘트 콘크리트보다 強度
減少現象을 나타냈다. 이것은 Saut의 이론에
의해 初期養生의 높은 온도는 鉻化한 수화작용
때문에 높은 강도를 나타내지만 長期材質으로 잔
수록 強度減少가 된다는 研究와 일치하는 결과라
생각한다.

또한, 蒸気養生을 실시할 경우 専門의 인 기술
가에 자문을 받아야 하며 100℃以上の 蒸気養
生의 경우에는 高圧蒸気養生 方法을 하여야 한다.

라. 보통시멘트 콘크리트, 염화칼슘을 添加한
콘크리트, 早強減水分散剤을 添加한 콘크
리트, 蒸気養生한 콘크리트와 相互強度比較

보통시멘트 콘크리트, 염화칼슘을 添加한 콘
크리트, 早強減水分散剤을 添加한 콘크리트, 蒸
気養生한 콘크리트의 材質別 引張強度를 비교
並圖示하면 Fig. 11과 같이 염화칼슘을 添加한 콘
크리트, 早強減水分散剤을 添加한 콘크리트, 蒸
気養生한 콘크리트는 材質 1日에서 보통시멘트 콘
크리트보다 4～6 kg/cm²의 強度增加가 있었으며
材質 7日, 28日에서는 蒸気養生 100℃에서 보통
시멘트 콘크리트보다 3kg/cm²의 強度低下가 있
었으나 염화칼슘을 添加한 콘크리트와 早強減水
分散剤을 첨가한 콘크리트는 強度의 增加現象이
나타났다.

보통시멘트 콘크리트, 염화칼슘, 早強減水分散
剤, 蒸気養生한 콘크리트에 있어서 配合보다는
富配合에서 계숙적인 強度增加가 나타났으며 각
3. 렌트강도와 탱크강도의 관계

보통 시멘트 콘크리트와 염화물 승을 추가한 콘크리트, 증수어염에 탑한 콘크리트, 증식양생 (60℃, 100℃)을 한 콘크리트의 렌트과 탱크 강도의 관계를 표시함 Fig.12, 13, 14, 15, 16과 같이, 상관계수 r = 0.976, r = 0.988, r = 0.976, r = 0.950, r = 0.879로 모두 직선형으로

![Graph](image1)

Fig.11. Tensile strength versus age of plain, CaCl₂, C.W and steam curing concrete.

![Graph](image2)

Fig.12. Correlation between compressive strength and tensile strength. (plain concrete)

![Graph](image3)

Fig.13. Correlation between compressive strength and tensile strength. (CaCl₂)

![Graph](image4)

Fig.14. Correlation between compressive strength and tensile strength. (C - W)
Fig. 15. Correlation between compressive strength and tensile strength. (steam curing 60℃)

Fig. 16. Correlation between compressive strength and tensile strength. (steam curing 100℃)

Table 7. Relation between compressive and tensile strength of concrete

<table>
<thead>
<tr>
<th>Item</th>
<th>Days</th>
<th>σ_t/σ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>1</td>
<td>1/6.7</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/9.5</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1/8.8</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>1</td>
<td>1/7.5</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/7.6</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1/7.8</td>
</tr>
<tr>
<td>C. W</td>
<td>1</td>
<td>1/7.2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1/8.1</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1/7.6</td>
</tr>
<tr>
<td>Steam</td>
<td>1</td>
<td>1/7.7</td>
</tr>
<tr>
<td>curing</td>
<td>7</td>
<td>1/9.4</td>
</tr>
<tr>
<td>60℃</td>
<td>28</td>
<td>1/9.4</td>
</tr>
<tr>
<td>Steam</td>
<td>1</td>
<td>1/8.6</td>
</tr>
<tr>
<td>curing</td>
<td>7</td>
<td>1/9.2</td>
</tr>
<tr>
<td>100℃</td>
<td>28</td>
<td>1/9.1</td>
</tr>
</tbody>
</table>

고도의有意性은 나타내고 있다.

또한, 壓縮強度와 引張強度의 比를 材齡別으로 구하여 본 결과 Table 7과 같이 早期強度, 早期強度, 蒸氣養生을 한 콘크리트의 (σ_t/σ_c)는 材齡 1일에서 보통시멘트 콘크리트보다 強度比가 큰 것은 早期強度增進으로 말미암아 引張強度보다 壓縮強度가 더 크게 나타났다는 것을 의미하며 材齡 7일, 28일에서 早期強度 watering의 영향을 사용한 콘크리트는 (σ_t/σ_c)가 작게 나타났으나 蒸氣養生에 있어서는 (σ_t/σ_c)는 材齡 7일에서는 작게 나타났고 材齡 28일에서는 크게 나타났다.

이러한 현상은 초기에는 압축과 引張強度가 증가하지만, 정기적으로 강수하여 압축강도보다 압축강도가 더 크게 증가하기 때문이라 생각된다. 이러한 현상은 姜의 연구와 일치하는 경향을 보였다.

摘要

이 연구는 早期強度增進을 위한 目的으로 蒸氣養生, 早期強度 watering, 蒸氣養生 温度別로 구분하여 콘크리트의 強度特性을 보통시멘트 콘크리트와 比較하여 그 性質을 研究함으로써 콘크리트
트의 효율적인 사용을 위한 기본적 자료를 마련하는 데 있으며, 이 연구에서 얻어진 결과를 요약하면 다음과 같다.

1. 무생물 원분류는 최적의 첨가량인 시멘트 중량의 0.75% 첨가량에서 10% 저도의 정계에 수소 효과를 보였으나, 영향은 무 - 시멘트비에 영향을 거의 미치지 않았다.

2. 시멘트 및 콘크리트는 보통 시멘트 콘크리트에 비하여 영향은 시멘트 중량의 2.0%에서 125%, 143% 무생물 원분류는 시멘트 중량의 0.75%에서 120%, 140%로 최대 영향을 나타내었으며 그 이상 첨가하면 강도가 저하하는 경향을 보였다.

3. 무생물 원분류는 60°C 오염시의 경우에서는 시멘트 중량이 증가함에 따라 강도의 증가현상을 보었으나, 100°C 오염시 시멘트 1%에서는 보통 시멘트 콘크리트보다 2배정도의 강도증가를 나타내었고 시멘트 7% 이후에는 보통 시멘트 콘크리트와 비슷한 강도증가 현상을 보였다.

4. 보통 시멘트 콘크리트, 유화성 및 무생물 원분류는 무생물 원분류의 첨가한 콘크리트와 무생물 원분류의 시멘트의 시멘트 첨가량 및 시멘트의 성성질의 상관성을 검토한 바 있으며 각 고도의 유의성이 인정되었다.

참고문헌

15. 申鉉默. 金賢勇. 1987. 加熱養生 콘크리트의水和強度에 관한研究. 大韓土木學會誌. 7(3): 212.
21. ACI. 1982. Accelerated curing of concrete at atmospheric pressure. ACI manual of

27. 小野田. 1964. コンクリート構造物. 中央調査: 10-42.