Association between Genetic Polymorphisms of Blood Proteins and Meat Production Traits in Korean Native Cattle

Byung Chan Sang*, Sung Wook Han*, Hyung Doo Shin**, Seung Heui Ryoo* and Sang Hoon Lee*

SUMMARY

To investigate the genetic polymorphisms and constitutions of blood proteins and enzymes in the Korean native cattle population of National Livestock Cooperatives Federation (NLCF), the genetic variants of transferrin (Tf), post-transferrin-2 (pTf-2), albumin (Alb), post-albumin (pAlb), ceruloplasmin (Cp), amylase-I (Am-I) and hemoglobin (Hb) were analyzed using the PAGE (polyacrylamide gel electrophoresis) and STAGE (starch gel electrophoresis) methods.

On the genetic variants of the serum proteins, the transferrin (Tf) locus was assumed to be genetically controlled by codominant alleles, Tf A, D₁, D₂ and E alleles, and the gene frequencies of these were 0.249, 0.248, 0.260 and 0.243, respectively. The post-transferrin locus was observed to be controlled by pTf-2 F and S alleles, and the gene frequencies of these were 0.662 and 0.338, respectively.

The post-albumin (pAlb) loci were identified to be controlled by two alleles, pAlb F and S alleles for pAlb locus, and the gene frequencies of these were 0.440 and 0.560 for pAlb F and S alleles, respectively.

On the genetic variants of the serum enzymes, ceruloplasmin (Cp) and amylase-I (Am-I) loci were found to be controlled by two alleles, Cp F and S for Cp locus, and Am-I B and C for Am-I locus, and gene frequencies of these were 0.319 and 0.681 for Cp F and S, and 0.871 and 0.129 for Am-I B and C, respectively.

On the genetic variants of the hemoglobin (Hb), the distributions of genotypes were 76.5, 21.2 and 2.3% for Hb AA, AB and BB types, and the gene frequencies for Hb A and B were 0.871 and 0.129, respectively.

On the effects of genetic variants of blood proteins, Tf D₁D₁, D₂D₂ and D₁E genotypes were significantly higher on body weight at 6 month and average daily gain than that of other Tf genotypes.

* 충남대학교 농과대학 동물자원학부 (Division of Animal Science and Resources, College of Agriculture, Chungnam National University, Taejon, Korea/Zip 305-764)
** 축협중앙회 한우개량부 (Korean Native Cattle Improvement Center, NLCF, Seosan, Korea/Zip 356-820)
*** 본 연구는 농림부에서 시행한 94 농림수산 특성연구 지원과제의 연구로 수행된 연구결과의 일부임.
한우의 혈액단백질의 유전적 다형과 산육형질간의 연관성

서 언

최근 선진의국에서는 가축의 개량을 위한 분자 유전수준에서의 연구가 활발히 진행되어 가축 및 수의 유전학분야에서 가축의 품종 및 개체의 기원분석, 가축접종의 유전적 구조분석, 친가검말 및 개체적학 및 가계의 근본적 추정은 물론 경제 형질의 조기선별방법의 모세에 대한 다각적인 분야에서 연구가 수행되어 이들이 가축유전 및 육종분야에서의 응용이 활발히 시도되고 있다.

본 연구와 관련하여 소의 혈액단백질 및 효소의 유전적 다형에 대한 연구결과를 살펴 보면 transferrin의 다형(20)과 post-transferrin-2의 다형(22), post-albumin, albumin 및 amylase의 다형에 대하여 발표한 바 있으며(2, 3, 4), carboxic anhydrase의 다형에 대하여도 보고된 바 있다(18, 19). 이런 혈액단백질 다형에 대한 연구는 소의 친가검말 및 개체적학을 위한 유용한 방법으로 종축의 동물이나 능력검정 업무등에 이용될 수 있다는 것이 인정되어져서부터 더욱 발전하여 왔다(15, 21). 특히 최근에는 가축의 유전적 질과 관련되어 있는 유전적 표지와 경제형질간의 연관성을 구명하므로써 가축의 조기선택 및 산발 보조수단으로서의 이용성 등에 대한 연구도 활발히 진행중에 있다. 이러한 국제적인 추세에 따라 국내에서도 carboxic anhydrase의 다형에 대하여 보고하였고(10), transferrin, albumin, post-albumin 및 hemoglobin 다형에 대하여 보고된 바 있다(29, 30). 한편 Holstein종과 육우의 혈액단백질의 유전적 다형에 대하여 분석보고한 바 있으며(26, 27), 한우의 혈액단백질 다형에 대하여도 보고된 바 있다(24, 30).

한우는 우리나라에서 오래전부터 사육되어온 고유한 재래가축으로서 유전자원의 보존과 개량을 위한 분자유전 수준에서의 검토를 위한 연구가 시급히 요구되고 있으나, 이에 대한 연구는 아주 미흡한 실정이다. 따라서 본 연구는 축형증강회 한우개발부서에서 사육중인 우리나라 고유우종인 한우접종의 주요 혈액단백질인 transferrin(TT), post-transferrin-2(pTT-2), albumin(Alb), post-albumin(pAlb)의 유전적 다형을 polyacrylamide gel electrophoresis (PAGE) 방법과, 형질효소인 ceruloplasmin(Cp) 및 amylase-(A(m-A)) 그리고 효소단백질인 hemoglobin(Hb)의 유전적 다형을 starch gel electrophoresis (STAGE) 방법으로 분석하여, 이들의 유전적형의 분포와 유전자번도를 추정하여, 한우접종의 분자유전 수준에서의 유전적 구조를 분석하고 이를 접종의 혈액단백질 및 효소의 유전적형과 산육형질간의 연관성을 구명하여, 한우의 효율적인 유전적 개량을 위한 조기 선발 및 산발 보조수단으로의 이용 가능성을 탐색하여 한우의 유전적 개량을 위한 분자유전 수준에서의 검토에 기여 할 수 있는 기초자료를 얻고자 실시하였다.

재료 및 방법

1. 시료의 채취 및 조제

한우혈액의 혈청단백질 및 효소와 혈구 단백질의 유전적 다형을 분석하기 위한 공시제료는 축형증강회 한우개발부서에서 사육중인 재래한우 642두의 각 개체의 경매액에서 혈과란이 들어 있는 진공 튜브를 이용하여 10ml의 혈액을 채취하였고, 채취된 혈액은 3,000rpm으로 원심분리하여 형질과 혈구를 분리하였으며, 분리된 혈구는 다시 10배량의 0.9% NaCl 용액에 3회 셔우 원심분리한 후 저온에 보관하여 사용하였다. 혈청을 분리한 시료를 하루 2회 60℃의 넝동고에 보존하면서 응용하여 유전적 다형분석용 전기영동 시료로 사용하였다.

2. 조사항목

1) 체중 및 일당제제량

체중의 측정은 생식체중, 6개월령 체중을 측정하였으며, 일당제제량은 6개월령 체중에서 생식체중을 제한 후 180일로 나누어 계산하였다.

2) 혈액단백질의 유전적 다형

혈액단백질의 유전적 다형은 혈청단백질인 albumin(Alb), post-albumin(pAlb), transferrin(TT) 및 post-transferrin-2(pTT-2)와 형질효소인 ceruloplasmin(Cp) 및 amylase-(A(m-A)) 그리고 혈구단백질인 hemoglobin(Hb)의 다형을 조사하였다.

3. 혈액단백질의 유전적 다형분석

1) 혈청단백질의 유전적 다형분석
혈청단백질인 albumin, post-albumin, transferrin 및 post-transferrin-2의 유전적 다양성 분석은 PAGE 방법을 이용하였으며(8, 13), gel 제작용 완충액은 acrylamide 60.0g, bis-acrylamide 1.5g에 종류수 112.0ml을 넣어 만든 32% acrylamide A용액과 0.75M tris-solution 37.5ml, 0.095M citric acid 37.5ml, TEMED 250.0μl 및 2-mercaptoethanol 75.0μl를 혼합한 B용액 및 ammonium persulphate 0.26g에 종류수 100.0ml을 혼합한 C용액을 제조하여, 이들 A, B, C 용액과 종류수 및 TEMED를 혼합하여 12%, 4% 및 8%의 세층으로 gel을 제작하였고, 전극용 tris-borate 완충액은 tris 10.56g과 boric acid 2.67g에 종류수를 넣어 1,000ml로 만들었으며, 전기영동의 전류는 60mA로 약 4시간 동안 전기영동을 하였다. 젤의 염색 및 탈색은 영동 종료 후 0.8% coomasie brilliant blue 용액으로 20분간 염색한 후, 5% acetic acid로 탈색시켜 판독하였다.

2) 혈청효소의 유전적 다양성

혈청효소인 ceruloplasmin과 amylase-I의 유전적 다양성은 STAGE 방법을 이용하였으며(13), gel 제조용 완충액은 pH 7.5로 tris 1.69g, citric acid 0.84g에 종류수를 넣어 1,000ml로 만들었으며, 전극용 완충액은 pH 8.7로 boric acid 18.7g, sodium hydroxide 4.0g에 종류수를 넣어 1,000ml로 만들었고, 여과에 의한 전류를 관리해 10분간 200volt의 전압으로 영동한 후, 300volt의 전압으로 borate안이 약 7cm 정도에서 전기 영동을 완료하고, gel을 0.5% O-tolidine 염색액에 넣어 incubator에서 12시간 동안 반응한 후, 50% methanol 용액으로 탈색하였다.

3) 혈구단백질의 유전적 다양성

혈구단백질인 hemoglobin의 다양성은 STAGE 방법을 이용하였으며(13), gel 제조용 완충액은 tris 20.2g, EDTA 2.2g에 종류수를 넣어 1,000ml를 만들었으며, 전극용 완충액 tris 20.2g, EDTA 2.2g에 종류수를 넣어 1,000ml를 만들었다. gel 제작은 gel 용완충액에 전분을 넣어 만들었으며, 여과에 50배 회식된 협구를 혼합한 gel 젤단부위에 삽입 후, 300volt로 45분간 전기영동 후 직접 판독하였다.

4. 통계분석

1) 유전자 빈도의 추정

혈청단백질 및 효소의 각 유전자 좌위에 있어 유전자 빈도의 추정은 simple gene counting에 의거, 다음과 같이 추정하였다(17).

\[PA = \frac{(2AA + AB)}{2N}, \]
\[PB = 1 - PA, \]

이어서,

\[PA = \frac{A\text{유전자 빈도}}{B\text{유전자 빈도}} \]
\[AA = \text{AA유전자 빈도수}, \]
\[AB = \text{AB유전자 빈도수}, \]
\[N = \text{총 관측수} \]

2) 혈청단백질 및 효소의 유전자와 이유전체종간의 연관성 분석

혈청단백질의 유전자와 이유전체종간의 연관성을 분석하기 위한 통계분석은 SAS/STAT 6.03 package를 이용하여 최소자승법(least square method)에 의해 분석하였으며(11), 각 혈액단백질의 유전자형이 이유전체종에 미치는 효과를 추정하기 위한 연관성 분석은 다음과 같다.

\[Y_{ijklmnpqr} = u + S_i + P_j + E_k + C_l + H_m + T_n + A_0 + B_{0p} + PT_{0q} + PA_r + e_{ijklmnpqr} \]

여기서,

\[Y_{ijklmnpqr} = \text{각 개체의 관측치} \]
\[u = \text{전체 평균} \]
\[S_i = i \text{번 째 종모양의 효과} \]
\[P_j = j \text{번 째 산차의 효과} \]
\[E_k = k \text{번 째 성별의 효과} \]
\[C_l = l \text{번 째 혈액 계열의 효과} \]
\[H_m = m \text{번 째 HB좌위 유전자형의 효과} \]
\[T_n = n \text{번 째 Tf좌위 유전자형의 효과} \]
\[A_0 = o \text{번 째 Am-I좌위 유전자형의 효과} \]
\[B_{0p} = p \text{번 째 Cp좌위 유전자형의 효과} \]
\[PT_{0q} = q \text{번 째 pTf-2좌위 유전자형의 효과} \]
\[PA_r = r \text{번 째 pAlb좌위 유전자형의 효과} \]
\[e_{ijklmnpqr} = \text{각 개체에 대한 임의의 오차, } N(0, \sigma^2) \]
결과 및 고찰

1. 혈액단백질 및 효소의 전기영동성과 유전자형 분포

한우의 혈청단백질인 transferrin(Tf), post-transferrin-2(pTf-2), albumin(Alb), post-albumin (pAlb)의 유전적 변이체를 분석한 결과 이들의 전기영동성은 Fig. 1에 나타난 바와 같이, 유전자형의 분포는 Table 1에 제시한 바와 같다. Fig. 1의 전기영동양상에서 보는 바와 같이 이들 혈청단백질의 전기영동에 의한 이동순서는 post-transferrin-2, transferrin, post-albumin 및 albumin의 순으로 나타났다.

이들 혈청단백질의 유전적 다양형인상에 있어서 소의 transferrin(Tf) 다양형은 Gilbert(1958)가 TfA, D 및 E의 대립유전자로 존재하는 것으로 보고하였으나, 그 후 Kristjansson과 Hickman(1965)이 Tf D는 Tf D1 및 D2의 대립유전자로 분리한다고 보고하였으며, 그밖에 Tf B, Tf F, Tf G, Tf H 및 Tf X 등의 비교적 출현빈도가 대체로 낮은 대립유전자들이 여러 우종에서 보고되고 있다. 한편, post-transferrin-2(pTf-2)의 유전적 변이체는 소에서 처음으로 이 유전자체가 pTf-2 F와 S의 2종류의 대립유전자에 의하여 재배치된다고 보고하였으며, 이에 따라 pTf-2 FF, FS 및 SS의 3종의 표현형이 있음을 보고되었다. 한우의 pTf-2의 유전적 변이체에 있어서도 pTf-2 F와 S의 2종류의 대립유전자로 분류되어 pTf-2, FF, FS 및 SS의 3종류의 유전자형이 존재하는 것으로 확인되었다. 또한 albumin(Alb)의 유전적 다양형은 소에서 Alb A와 B의 2개 대립유전자자의 지배를 받으며(2) Alb AA, AB 및 BB 3종류의 표현형이 존재한다고 보고하였으며, 한우에서는 Alb A 대립유전자만 검출되었다. 또한 post-albumin(pAlb)의 유전자형은 전분 gel 전기영동에서 2개의 대립유전자 pAlb F와 S의 변이체가 있음을 보고하였으나, 한우에서도 pAlb F와 S의 2종류의 대립유전자들이 검출되어 모형적인 pAlb FF 및 SS형과 헤테로형인 pAlb FS의 3종류의 유전자형이 확인되었다. 혈청단백질의 유전자형의 분포는 post-transferrin(Tf) 유전자형 분포는 Tf AA, AD1, AD2, AE, D1D1, D1D2, D1E, D2D2, D2E 및 EE 형의 10종류의 유전자형이 확인되었다.

Fig. 1. Electrophoretic patterns of albumin(Alb), post-albumin(pAlb), transferrin(Tf) and post- transferrin-2(pTf-2) in serum of Korean Native cattle by polyacrylamide gel electrophoresis.
<table>
<thead>
<tr>
<th>Serum proteins</th>
<th>Genotypes</th>
<th>No. of Individual</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transferrin</td>
<td>AA</td>
<td>33</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>AD₁</td>
<td>80</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>AD₂</td>
<td>95</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>79</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>D₁D₁</td>
<td>39</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>D₁D₂</td>
<td>80</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>D₁E</td>
<td>80</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>D₂D₂</td>
<td>35</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>D₂E</td>
<td>89</td>
<td>13.9</td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>32</td>
<td>5.0</td>
</tr>
<tr>
<td>Post-transferrin-2</td>
<td>FF</td>
<td>265</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>319</td>
<td>49.7</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>58</td>
<td>9.0</td>
</tr>
<tr>
<td>Albumin</td>
<td>AA</td>
<td>64</td>
<td>100.0</td>
</tr>
<tr>
<td>Post–albumin</td>
<td>FF</td>
<td>244</td>
<td>38.0</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>283</td>
<td>44.1</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>115</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Tf의 유전자형의 분포는 Tf AD₂ 및 D₂E형이 각각 14.8 및 13.9%로 다른 유전자형에 비하여 높게 나타났는데 이들 결과는 한우집단의 Tf의 유전자형의 분포에서 Tf AD₂가 13.24%로 다른 유전자형에 비하여 높다고 보고한 성적과 같은 경향을 나타내었다(24).

또한 pTf-2의 유전자형의 분포에 있어서는 pTf-2 FF 및 FS형이 각각 41.3 및 49.7%로 아주 높은 빈도를 보였는데 이는 한우집단에서 pTf-2 FF형이 48.41%이었다고 보고한 결과와 유사한 결과를 보였다. 한편 Alb의 유전자형 분포에 있어서는 조사된 642두 모두 Alb AA형만 검출되었으며 한우집단에서 Alb BB형은 0.65%로 아주 낮은 빈도로 검출되었다고 보고한 성적과 일치하는 결과이었다(24). 또한 pAlb의 유전자형의 분포에 있어서 pAlb FF, FS 및 SS형이 각각 38.0, 44.1 및 17.9%로 pAlb FS 혼혈형이 다른 유전자형에 비하여 높은 빈도를 보였으며, 경기도 지방의 한우집단의 pAlb 유전자형 분포에서 pAlb FF, FS 및 SS형이 각각 36.88, 46.61 및 15.32%로 pAlb FS 혼혈형이 다른 유전자형에 비하여 높고 보고한 결과(30)와 유사한 분포를 보였다.

2) 혈청효소 및 혈모글로빈의 전기영동성과 유전자형 분포

한우의 혈청효소인 ceruloplasmin(Cp) 및 amylase-I(Arn-)과 혈구단백질인 hemoglobin(Hb)의 유전자형 변이를 분석한 결과 얻어진 전기영동성은 각각 Fig. 2 및 3에 나타낸 바와 같이 유전자형의 분포는 Table 2에 제시한 바와 같다.
한우의 혈액단백질의 유전적 특성과 항체형질간의 연관성

Fig. 2에서 볼 수 있는 바와 같이 혈청효소인 Cp의 유전적 다양은 Cp F 및 S 대림유전자가 검출되었으며 유전자형은 Cp FF, FS 및 SS형이 확인되었으며 Am-I의 유전적 다양은 Am-I BB, BC 및 CC형이 확인되었고, Hb의 유전적 다양은 Hb A와 B 대림유전자가 검출되어 유전자형은 Hb AA, AB 및 BB형의 3종류의 유전자형이 확인되었다.

Table 2에 나타난 바와 같이 혈청효소인 Cp의 유전자형 분포는 Cp FF, FS 및 SS형이 각각 9.8, 44.2 및 46.0%로 Cp SS형의 분포가 높게 나타났으며, Am-I의 유전자형 분포는 Am-I BB, BC 및 CC형에서 각각 11.1, 41.6 및 47.4%로 Am-I CC형이 높은 분포를 보였고, Hb 유전자형 분포는 Hb AA, AB 및 BB형에서 각각 76.5, 21.2 및 2.3%로 Hb AA형이 다른 유전자형에 비하여 높은 분포를 보였다.

2. 혈액단백질 및 효소의 유전자정도
1) 혈청단백질의 유전자정도
혈청단백질인 transferrin(Tf), post-transferrin-2 (pTf-2), albumin(Alb) 및 post-albumin(pAlb)의 유전자 정도는 Table 3에 제시한 바와 같다.

Table 2. Observed distribution of ceruloplasmin, amylase-I and hemoglobin genotypes in Korean native cattle

<table>
<thead>
<tr>
<th>Serum enzymes and hemoglobin</th>
<th>Genotypes</th>
<th>No. of Individual</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceruloplasmin</td>
<td>FF</td>
<td>63</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>284</td>
<td>44.2</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>295</td>
<td>46.0</td>
</tr>
<tr>
<td>Amylase-I</td>
<td>BB</td>
<td>71</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>267</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>304</td>
<td>47.4</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>AA</td>
<td>491</td>
<td>76.5</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>136</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>15</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Table 3. Gene frequencies of transferrin, post-transferrin-2, albumin and post-albumin genotypes in serum of Korean native cattle

<table>
<thead>
<tr>
<th>No. of Ind.</th>
<th>Transferrin</th>
<th>Post-transferrin-2</th>
<th>Albumin</th>
<th>Post-albumin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>D1</td>
<td>D2</td>
<td>E</td>
</tr>
<tr>
<td>642</td>
<td>0.249</td>
<td>0.248</td>
<td>0.260</td>
<td>0.243</td>
</tr>
</tbody>
</table>

Table 3에서 보는 바와 같이 Tf의 유전자 빈도는 Tf A, D1, D2 및 E의 대립유전자빈도가 각각 0.249, 0.248, 0.260 및 0.243으로 각 대립유전자 가 대체로 비슷한 빈도를 보였으며 이들 결과는 신(1992)이 한우의 Tf A, D1, D2 및 E의 유전자 빈도가 각각 0.265, 0.234, 0.247 및 0.235라고 보 고한 결과와 대체로 유사한 분포를 보였으며, 한 우의 Tf A, D1, D2 및 E 유전자빈도가 각각 0.274, 0.270, 0.233 및 0.207이라고 보고한 성적과 도 대체로 비슷한 분포를 보였으며 (30), 육우 품 종인 Chalories, Simmental 및 Hereford 중의 Tf 의 유전자 다양성 분석에서 이들 품종간에는 Tf D2 의 빈도가 Tf A, D1 및 E의 빈도보다 아주 높 다고 보고한 성적과도 어느 정도 유사한 결과를 보였다 (8). 한편 post-transferrin-2(TF-2)의 유 전자빈도에 있어서는 TF-2 F와 S가 각각 0.662와 0.338로 TF-2 F 유전자빈도가 높등한 높은 수치를 보였다. 이들 결과는 한우에서 TF-2 F 유 전자빈도가 TF-2 S 유전자빈도보다 높다고 보 고한 성적과 대체로 비슷한 분포를 보였다(12, 24, 30). 또한 albumin(Alb)의 유전자빈도는 Alb A 빈도가 1.0으로, 한우에서 Alb B 유전자 빈도는 거의 없거나 아주 낮다고 보고한 성적과 대체 로 비슷한 분포를 보였다 (24, 27). 한편 post- albumin(pAlb)의 유전자빈도에 있어서 pAlb F와 S 빈도는 각각 0.600 및 0.400으로 pAlb F 유전자 빈도보다 다소 높았다.

이들 결과는 한우에서 pAlb F와 S의 유전자 빈도는 대체로 비슷하다고 보고한 성적과 유사하 였으며 (24, 30), Chalories와 Hereford 중에서 pAlb F의 빈도가 pAlb S 유전자빈도보다 높다고 보고한 성적과도 유사한 결과를 나타내었 다 (8).

2) 혈청효소 및 혈구단백질의 유전자비도
혈청효소인 ceruloplasmin(Cp) 및 amylase-I (Am-I)과 혈구단백질인 hemoglobin(Hb)의 유전 자빈도는 Table 4에 나타낸 바와 같다.

Table 4. Gene frequencies of ceruloplasmin, amylase-I and hemoglobin genotypes in Korean native cattle

<table>
<thead>
<tr>
<th>No. of Ind.</th>
<th>Ceruloplasmin</th>
<th>Amylase-I</th>
<th>Hemoglobin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>S</td>
<td>B</td>
</tr>
<tr>
<td>642</td>
<td>0.319</td>
<td>0.681</td>
<td>0.319</td>
</tr>
</tbody>
</table>

Table 4에 나타낸 바와 같이 Cp 유전자빈도는 Cp F 및 S에서 각각 0.319와 0.681로 Cp S 빈도가 Cp F 빈도에 비하여 다소 높은 수치를 보였 다. 이들 결과는 Cp 유전자빈도 분석에서 Cp F와 S의 빈도가 0.33, 0.07이라고 보고한 성적 (12) 및 한우의 Cp F와 S의 빈도가 각각 0.338, 0.662 라고 보고한 결과와는 대체로 비슷한 유전자 빈 도를 보였다 (24). 한편 Am-I의 유전자빈도에 있어서는 Am-I B 및 C에서 각각 0.319, 0.682로 Am-I 빈도가 Am-I B 빈도 보다 다소 높은 수치를 나타내었다.

이들 결과는 한우 집단에서 Cp C 유전자빈도가 Cp B 유전자빈도보다 높다고 보고한 성적과 대체로 비슷한 유전자빈도를 보였으며 (12, 24), 소에서 Cp C 유전자빈도가 Cp B 유전자빈도 보 다 다소 높다고 보고한 성적과도 부합되는 결과를 보였다 (13, 16, 25). 또한 Hb를 지배하는 유전자빈도에 있어서는 Hb A와 B에서 각각 0.871, 0.129로 Hb A 유전자빈도가 Hb B 유전자빈도보다 아주 높은 빈도를 보였다.

이들 결과는 Ito 등 (1988)이 한우, 일본 흑색화 우 및 Simmental종의 Hb 유전자빈도 분석에서
한우의 혈액단백질의 유전적 다양성과 산육형질간의 연관성

Hb A와 B의 유전자빈도가 각각 한우는 0.866 및 0.134이었고, 일본 흑색우는 0.880 및 0.120이었으며, Simmental종은 각각 0.876 및 0.124로 Hb A 유전자빈도가 Hb B 유전자빈도보다 아주 높다고 보고한 성적과 대체로 비슷한 빈도를 보였으며, 한우에서 Hb A와 B의 유전자빈도가 각각 0.870 및 0.130으로 Hb A의 유전자빈도가 Hb B 유전자빈도 보다 아주 높다고 보고한 성적과도 비슷한 유전자빈도를 보였다(24). 한편, Hb B 유전

번도는 대부분의 유럽계 우종에는 낮은 빈도를 보이는 것으로 알려져 있으나, Zebu계의 우종에

서는 대체로 높은 유전자빈도를 보이는 것으로 보고되고 있다.

3. 혈액단백질의 유전자형과 산육형질간의 연관성

한우의 혈액단백질의 유전자형별 생식성적, 6개

월령체중 및 일당증체량의 최소자승 평균은

Table 5에 나타낸 바와 같다.

<table>
<thead>
<tr>
<th>Blood proteins</th>
<th>Genotypes</th>
<th>Body weight (kg)</th>
<th>Average daily gain (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>at birth</td>
<td>at 6 month</td>
</tr>
<tr>
<td>Transferrin</td>
<td>AA</td>
<td>21.519</td>
<td>116.053</td>
</tr>
<tr>
<td></td>
<td>AD₁</td>
<td>21.755</td>
<td>111.687</td>
</tr>
<tr>
<td></td>
<td>AD₂</td>
<td>22.101*</td>
<td>117.979</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>21.997</td>
<td>117.708</td>
</tr>
<tr>
<td></td>
<td>D₁D₁</td>
<td>21.147</td>
<td>112.501</td>
</tr>
<tr>
<td></td>
<td>D₁D₂</td>
<td>21.855</td>
<td>123.333*</td>
</tr>
<tr>
<td></td>
<td>D₂E</td>
<td>21.864</td>
<td>115.707</td>
</tr>
<tr>
<td></td>
<td>D₂D₂</td>
<td>22.601*</td>
<td>124.516*</td>
</tr>
<tr>
<td></td>
<td>D₂E</td>
<td>21.593</td>
<td>123.769*</td>
</tr>
<tr>
<td></td>
<td>EE</td>
<td>22.020</td>
<td>121.026</td>
</tr>
<tr>
<td>Post-transferrin-2</td>
<td>FF</td>
<td>21.933</td>
<td>117.027</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>22.047</td>
<td>119.464</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>21.556</td>
<td>118.793</td>
</tr>
<tr>
<td>Post-albumin</td>
<td>FF</td>
<td>21.838</td>
<td>119.215</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>21.994</td>
<td>116.783</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>21.704</td>
<td>119.286</td>
</tr>
<tr>
<td>Ceruloplasmin</td>
<td>FF</td>
<td>21.523</td>
<td>120.871</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>22.274*</td>
<td>116.882</td>
</tr>
<tr>
<td></td>
<td>SS</td>
<td>21.739</td>
<td>117.532</td>
</tr>
<tr>
<td>Amylase-I</td>
<td>BB</td>
<td>21.525</td>
<td>120.867</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>22.426*</td>
<td>116.882</td>
</tr>
<tr>
<td></td>
<td>CC</td>
<td>21.739</td>
<td>117.532</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>AA</td>
<td>21.865</td>
<td>115.117</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>22.169</td>
<td>117.649</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>21.502</td>
<td>122.519</td>
</tr>
</tbody>
</table>

* : P < 0.05
Table 5에서 보는 바와 같이 혈액단백질의 유전자가 산업형태에 미치는 영향이 있어서 Tf의 유전자형이 산업형태에 미치는 영향은 생식소중에서 Tf AD$_2$, D$_1$D$_2$에서 각각 22.101 및 22.601kg으로 다른 유전자형에 비하여 유익적으로 높았으며, 6개월령 체중에서 Tf D$_1$D$_2$, D$_2$D$_2$ 및 D$_2$E에서 각각 123.333, 124.516 및 123.769kg가 일장증세량에서 각각 0.563, 0.566 및 0.567kg으로 다른 유전자형에 비하여 5% 유익수중에서 높게 나타났다. 한편 Cp 및 Am-I의 유전자형이 산업형태에 미치는 영향은 생식체중에서만 Cp FS 및 Am-I BC형에서 각각 22.274 및 22.426kg으로 다른 유전자형에 비하여 유익적으로 높게 나타났으며, 6개월령 체중과 일장증세량에서는 유의자가 인정되지 않았다. 그리고 pTf-2, pAlb 및 Hb의 유전자형이 산업형태에 미치는 영향은 이들 유전자형과 산업형태간에 유익적인 연관성은 보이지 않았다. 따라서 이상의 결과를 종합해 볼 때 한우의 Tf D$_1$D$_2$, D$_2$D$_2$ 및 D$_2$E 유전자형이 산업형태 6개월령 체중과 일장증세량에서 유익적으로 높은 체중을 나타내었다. 반면 아린성기에 있어서의 조기발달은 발달기준의 혈당, 생식체중 및 체형과 더불어 혈청단백질인 Tf D$_1$D$_2$, D$_2$D$_2$ 및 D$_2$E 유전자형을 유전자형으로 이용하여 발달보조 수단으로 활용시 발달효율을 더욱 증대시킬 수 있을 것으로 사료되었다.

적요

한우집단의 혈액단백질 및 효소의 유전적 다양성과 유전적 구성을 조사하기 위하여 축종합진화에서 사용중인 한우집단에 대한 transferrin(Tf), post-transferrin-2(pTf-2), albumin(Alb), post-albumin(pAlb), ceruloplasmin(Cp), amylase-I(Am-I) 및 hemoglobin(Hb)의 유전자 변체를 PAGE(polyacrylamide gel electrophoresis)와 STAGE(starch gel electrophoresis)방법으로 분석하였다. 혈청단백질의 유전적 변체에 있어서 Tf유전자가 Tf AD$_2$, D$_1$D$_2$ 및 E 대립유전자의 지배를 받는 것으로 추정되었으며, 이들의 유전자변도는 각각 0.249, 0.248, 0.260, 0.243이었다. pTf-2 유전자가 pTf-2 F와 S 대립유전자의 지배를 받는 것으로 확인되었으며, 이들의 유전자변도는 각각 0.662 및 0.338이었고, pAlb 유전자변도는 pAlb F와 S 대립유전자의 지배를 받는 것으로 확인되었으며, 이들의 유전자변도는 pAlb F와 S에서 각각 0.600 및 0.400이었다.

혈청효소의 유전적 변이체에 있어서 Cp유전자 변종은 Cp F와 S, 그리고 Am-I유전자는 Am-I B와 C 대립유전자의 지배를 받는 것으로 확인되었으며, 이들의 유전자변도는 Cp F와 S에서 각각 0.319 및 0.681이었고, Am-I B와 C에서 각각 0.318 및 0.682이었다.

Hb의 유전적 변이체에 있어서 Hb 유전자 변종은 Hb AA, Ab 및 BB형에서 76.5, 21.2 및 2.3%이었고, 유전자변도는 Hb A 및 B에서 각각 0.871 및 0.129이었다.

산업형태에 대한 혈액단백질의 유전적 변이체의 효과에 있어서는 Tf D$_1$D$_2$, D$_2$D$_2$ 및 D$_2$E 유전자형이 6개월령 체중과 일장증세량에서 유익적으로 높았다.

인용문헌

6. Bangham, A. D. and B. S. Blugmberg. 1958. Distribution of electrophoretically different hemoglobin among some cattle breeds of
28. 한상기, 이기만, 1982(a). 한우 및 Holstein종
의 hemoglobin에 관한 연구. 한복지. 24 : 517-521.
29. 한상기, 이기만. 1982(b). 한우의 albumin(Ab) 형 및 post-albumin(Pa)형에 관한 연구. 한
축지. 26 : 522-526.
30. 한상기, 윤희섭, 정의룡, 신유철, 변희대. 1995. 제조한우의 보존을 위한 혈청 및 혈구단백질
의 유전적 다양성. 한복지. 37 : 43-51.