Gun-type Nozzleの喷霧粒子 微粒化에 關한 研究

李相祐*

Study on the Improvement of Atomization of Droplet for Gun-type Nozzle

Sang-Woo Lee

SUMMARY

In order to improve atomization of droplet of sprayers, gun-type nozzle equipped with swirl screw which could increase tangential velocity had been used in this study.

The results obtained were as follow:

The larger diameter of atomized droplet was, the longer it reached.

The atomizing phenomenon while using swirl screw in the nozzle was more efficient.

There was little difference of travelling distance in the both nozzles when the small diameter of disk hole was used, but the travelling distance of the nozzle with swirl screw was evidently getting shorter with the increase of the hole diameter compared to that of the nozzle without swirl screw.

The size of sprayed particles was getting smaller owing to the phenomenon of air movement the one to two meters travelling distance of droplet from maximum travelling point.

結論

喷霧機는 우리나라에 있어서 病虫害防治機 中에서 가장 많이 普及되어 利用되고 있는 機械이다.

噴霧機 中에서 噴霧機機能 is 藥液を微粒化する要素로서 噴霧機의 性能を左右하는 重要是 部品이 며 噴霧機的 噴霧機 is Solid-cone type, 旋回流を 利用する 方式에 따라서 高速流を 切断 旋回流로 過通する 微粒化 하는 Swirl type과 장애물에 衝突飛散시키 微粒化하는 Impinging type, 旋回流を 切断 旋回流로 過通する 微粒化하는 Solid-cone type 등 3가지로 別할 수 있다.

現在 噴霧機는 가장 많이 普及하고 있는 形態는 Swirl type으로 低壓力流を 忌避라도 微粒化が 良好하다 噴霧効率이 높으나 噴霧粒子가 標準粒子에 比하여 큰 것이 噴霧効率이 큰 Solid-cone type의 原理를 利用하고 另て近距離用으로 微粒化할 수 있도록 Swirl type의 原理를 加味한 것이 Gun-type Nozzle에 おあがる 수도 있다.

Gun-type Nozzle을 實際使用함에 있어서는 主로 Solid-cone type으로 利用하게 되는데 噴霧効率이 높으나 噴霧粒子가 높은 크로로 附着性이 不良하고 附着性이 不良하면 微布薬剤의 滴下現象이 發生하여 薬剤의 損失을 초래하게 된다.

本研究의 目的은 Gun-type Nozzle에 있어서 Solid-cone type의 長短에 噴霧粒子의 微粒化를 優良하게 하기 為하여 切線速度 U/2g(U는 切線方向의 旋回速度)를 增大하여 噴霧粒子의 微粒化을 改善하고자 하였다.

* 農科大學 農業機械學科(Dept. of Agr. Machin. Eng., Coll. of Agr., Chungnam Univ., Daejeon)
1. 实験装置 및 实験方法

2. 實驗方法

Table 1. Experiment design.

<table>
<thead>
<tr>
<th>Nozzle hole dia. (mm)</th>
<th>Swirl screw(°)</th>
<th>Pressure (kg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>1.4</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>(1.8)</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>35</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Variable factor: Nozzle hole dia.; 1.4mm, 1.8mm, 2.2mm, 2.6mm, 3.0mm
Nozzle의 噴口의 높이는 採集装置平面에서 1m로 하며, 噴霧的支持角度는 20°로 固定하였고, 모든實驗에 바람의 影響을 받지 않도록 室内試験を 實施하였다.

落下量의 測定은 mass cylinder에 依하여 있었다고 噴霧粒子의 調査는 0.5mm의 Grease를 追加 Slide glass에 採集하여 이를 Scale 위에 即時 올려놓고 2cm 내에 있는 粒子를 擴大鏡으로 粒子의 直徑 0.5mm 以下, 0.5~1.0mm, 1.0~2.0mm, 2.0mm以上 4個 軽物別로 粒子的 數を 測定하였다. 採集時間은 Grease上에서 粒子가 重複되지 않는 範圍로 落下量 에 따라서 調節하여 實施하였다.

結果 및 考察

1. 落下粒子의 分布의 크기

3回 反複한 到達距離別 噴霧粒子의 調査는 実験測定 結果を 單位面積當의 粒子의 數로 환산한 값으로

\[D = \frac{0.25N_1 + 0.75N_2 + 1.5N_3 + 2.5N_4}{\sum N} \]

(D; 平均噴霧粒子의 直徑(mm) N1; 到達距離別 0.5 mm以下의 落下粒子의 數, N2; 到達距離別 0.5~1.0 mm의 落下粒子의 數, N3; 到達距離別 1.0~2.0mm 의 落下粒子의 數, N4; 到達距離別 2.0mm以上의 落下粒子의 數)의 式에 依하여 平均噴霧粒子의 直徑을 求求하였다.

到達距離別 平均噴霧粒子의 分布와 크기를 壓力別, S:crew 中心別, 噴口別으로 分割하여 分析한 結果 壓力이 到達距離別 噴霧粒子에 미치는 影響은 그림 3, 4, 5, 6, 7, 8과 같이 壓力이 食水목 噴霧粒子의 平均直徑은 軽く였고 噴霧粒子가 食水목 到達距離는 었다.

然而 最高到達距離로부터 1~2m 地點부터는 噴霧粒子가 輕く 죽 고, 現象이 나타났다. 이 実験에서 나타난 結果는 井井正信氏 및 田邊一氏가 報告한 噴霧粒子의 飛行 및 到達性에 關한 研究而 石原昌氏가 發表한 農業散布用 Nozzle의 研究에서 提示한 內容과 一致하였으며 另還流體의 運動 Energy 理論에도 부합하였다.

最高到達距離 地點으로부터 1~2m의 噴霧到達距離에 있어서는 噴霧粒子의 크기가 減少하는 現象이 나타났다. 이 減少된 現象은 粒子의 自體 Energy

Fig. 3. Droplet-size distribution vs travelling distance with 1.8mm outlet varying spraying pressure.

Fig. 4. Droplet-size distribution vs travelling distance with 2.2mm outlet varying spraying pressure.

Fig. 5. Droplet-size distribution vs travelling distance with 2.6mm outlet varying spraying pressure.
의 비행보다는 흐름에 의하여 액체가 유동되어 나타난 결과라 생각된다.

Gun type Nozzle 속에 Screw 중에 모입하였을 때와 모입하지 않았을 때의 도달거리별 액화 액체의 분배와 크기를 비교 하면 그림 5와 같이 Screw 중에 모입한 경우가 모입하지 않았을 때에 비교하여 액체 크기가의 변화가 적었으며 액체의 정확도가 잘 되었음을 알 수 있었다. 이 결과는 라이초리의[11,12]의 이론과 부합되었다.

2. 噴霧粒子의 到達性

3回 反復 完 到達距離별 噴霧落下量의 平均值을 cc /cm/min으로 所算한 값은 瞳柵用 噴霧機의 Nozzle에
関한 研究에서 利用한 分析方法 \(D_c = \sum M_i L_i \) (\(D_c \) =
落下分布中心距離(m), \(M_i \) : 噴霧落下量, \(L_i \) : 噴霧到達距離)에 依하여 落下分布中心距離를 算出하였고
噴霧壓力別 落下分布中心距離는 그림 11과 같이 壓
力이 증가할수록 噴霧到達距離는 빨아졌다.

噴口別 落下分布中心距離는 그림 12와 같이 Screw
中子가 있을때는 1.4mm부터 2.2mm까지는 增大하였고
2.6mm와 3.0mm에서는 增大している 現象이 나타났다.
이 增大한 現象은 Screw中子로 因하여 噴霧 壓力
이 噴出口에서 按體이 降低한 結果라 思料한다. 反面
에 Screw中子를 按入하지 않았을 때는 噴霧가 增大
록 到達性은 빨아졌다. 이 빨아진 現象은 中子로 因한
噴霧壓力의 增大가 없었던 結果라 생각된다.

한편 噴口의 壓力가 1.4mm일때는 Screw中子가 있
울때에도 噴霧는 큰 차이가 없었고, 2.2mm 噴口時
에는 Screw中子의 按入時が Screw中子가 있울때의
到達距離의 約 60% 정도 사리 미지기 턱하였다.
Screw角度別 噴霧分布中心距離는 그림 13과 같이
Screw角度가 작음수록 到達距離는 작았고, 壓力가
增大大到達距離가 大하게 나타났음은 Nozzle에
서의 切線速度와 直線速度의 配合로 因한 原因과 中
子로 因한 壓力損失로 基本되었다고 思料한다.

Fig. 11. Centro-position of travelling distance vs spraying pressure with different outlet size.

Fig. 12. Centro-position of travelling distance vs nozzle hole size.

Fig. 13. Centro-position of travelling distance with different angle of swirl screw.

摘 要

Gun-type nozzles에 있어서 風粒의 風粒化を 改善하기
為 切線速度を 增大させる 方法의 一環으로 Screw 中子
製作 裝置한 Nozzle로 室内で 噴霧実験한 結果
出現과 같은 結論을 얻었다.

噴霧粒子의 径粒이 增大할 때 噴霧到達距離는 增大하였으며
Screw中子를 裝置하였을 때에 裝置하지 않았을 때에
比하여 噴霧粒子의 風粒化는 明確히 增大하였고
噴霧到達距離는 噴口が 小口徑時に는 約 60% 정도 사리
있으나 噴口가 增大 함에 따라 增大하 점차 增大하였다.

最高 到達距離 地點부터 1~2m의 噴霧到達距離에
 있어서는 氣流浮遊移動의 現象으로 噴霧粒子가 작아
졌다.
参考文献