Studies on the Change of Sex Hormone Levels throughout the Estrous Cycle and Pregnancy in the Gilts.

Jang Hyung Lee*, Chang Sik Park** and Kyu Seung Lee**

SUMMARY

The present study was carried out to determine the changes of the sex hormone levels in serum throughout the estrous cycle and the gestation period on the Landrace gilts. The blood samples were taken from the vein of six gilts. LH, FSH, prolactin, progesterone, estradiol-17β and cortisol in serum were analyzed by the radioimmunoassay methods.

The results obtained on this study were summarized as follows:

1. The age at puberal estrus was 179.5 days, the weight at puberal estrus was 88.2kg, the length of estrous cycle was 21.3 days, the gestation length was 114 days and the litter size was 9.5 head in the Landrace gilts.

2. During the estrous cycle, the serum LH and prolactin concentrations were below 1.56mIU/ml and 2.4ng/ml, respectively, under the limit of detection of the assay. The FSH concentrations ranged from 1.50 to 2.20mIU/ml for day 6~15 after the estrus and they were below 1.25mIU/ml from day 3 to day +3, with day 0 being the first day of the estrus.

3. Progesterone concentrations were 1.90ng/ml at day 0 of the estrus and increased about 13.1ng/ml at day 3 of the estrus, and reached peak levels at day 9. Estradiol-17β concentrations were below 27.2pg/ml throughout the luteal phase, and reached about 27.2pg/ml at day 0 and day 18. Cortisol concentrations reached peak levels at day 0 and ranged from 24.65 to 28.57ng/ml throughout the luteal phase.

4. During the gestation period, the concentrations of LH, FSH and prolactin ranged of 3.10~4.37mIU/ml, 1.30~1.80mIU/ml and 2.60~6.70ng/ml, respectively.

5. Progesterone concentrations declined from 38.90~16.85ng/ml throughout the pregnancy to

* 慶南大學校 大学院 (Graduate School, Chungnam Natl. Univ., Daejon, Korea.)
** 農科大學 畜産学科 (Dept. of Animal Science, Coll. of Agriculture, Chungnam Natl. Univ., Daejon, Korea.)
1.90ng/ml at the time of parturition. Estradiol-\(^{17} \)\(\beta \) concentrations increased from 27.20pg/ml at 15 days after the pregnancy to 620.17pg/ml at the time of parturition. Cortisol concentrations reached peak levels at the time of parturition and ranged from 13.58 to 22.31ng/ml throughout the pregnancy.

序言

세지에서 "繁殖効率"을 증가시키기 위하여 "發情"과 "排卵"을 "好好"하여 "研究"과 "分析"되어 오거나 "妊娠"중에 임여는 "胎児의" "損失"을 "防止"하기 위한 "研究"과 "分析"의 "進行"되고 있다. "發情"과 "排卵"과 "妊娠"과 같은 "繁殖機能"은 "側臓"과 "巢巣"으로 "이어지는" "內分泌"의 "機能"에 "挙げ"하여 "発現"는 것으로 "発現"되어 있어 "繁殖機能"과 "性hormone"의 "相児"을 "完明"하는 것은 "繁殖効率"을 "増大"시키는데 있어서 매우 "重要"하다.

세지의 "繁殖形質"에 "於"한 "研究報告"를 "上げ"보면 "性成熟到達日齢"은 "學者들"에 "於" 102일齢"부터 350日齢"까지 "平均"로서 "平均の値"을 " 나타내게" 이어진 "實情"이나 "大部分의" "學者들은" 210~220日齢" 사이에 "報告"が "有"하고 있다. "此外" "性成熟到達体重"은 55kg으로 "於" 120kg까지 "平均"한 "変異"を "有"하고 있으나 "年齢が" "生体重"보다 "性成熟到達を" "決定"하게 "更" "正確な" "根據が" "報告"され "有"하고 있다. "此外" "Reutzel"과 "Sumption"는 "未經産豚"에서 "年齢が" "性成熟と" "日齢の増" "體重間々"에 "正的" "遺傳相関"이 "有"하고 "報告"하였다.

한편 "発情期間中"의 "性hormone水準"の "變化"에 "於" Rayford 등 "43"와 "Vandalem" 등 "47"와 "Edwards" 등 "16"과 "Van de Wiel" 등 "48"는 "排卵時の" LH水準이 "比較の" 낮은 "有"이며 "発情終了後" 2~3日" 사이에 "FSH放出量"이 "顯著な" "增加を" "見" "報告"하고 있는데 "이와 같은" "現象은" "発情週期の" "段階"에서 "estradiol"의 "値が" "水準과" "関係"が "有"하고 "有"하였다. Parvizi 등 "39"는 "矮豚の" "發情週期" "期間"에 "LH과 progesterone"의 "相互関係" "研究"에서 "LH의 episode"가 "先行される" "血中 progesteroneの" "濃度を" "増加させ" "報告"하였다. "此外" "Van de Wiel" 등 "49"는 "雄性豚" で "이와 같은" "関係를" "発現"することは "有"하고 "有"하였으며 "発情期中間期間에 LH episode와 estradiol分泌間에 "相関関係"가 "有"다고 "報告"하였다. Foxcroft "25"는 "progesterone의" "分泌減少"は "LH episode頻度の" "激減"する "増加"와 "振幅の" "減少を" "誘導"하여 "血中 FSHの" "水準が" "激減の" "減少を" "ガ
주는 작용을 한다고 보고하였으며, 분말은 탈연색에서의 cortisol이 증가되므로서
이 어색한 분말에의 oestrone과 oestradiol의 농도가 증가되므로, 19, 21, 24, 43으로 이
가한 후, oestrone과 oestradiol의 농도가 증가되므로서 19, 21, 24, 43으로 이
가한 후, 과거의 대상은 사전에 사용한 연구가 훨씬 높은 수준의 혈색소를
연구하고자 하였으며, 이는 종이의 측정의 표준을 얻기 위한 근본적인 의무가
서로의 연구가 필요하다고 하였다. 따라서 그 연구는 응급 장기의 발성
과 적절한 항체의 실험과, estradiol-17β 그리고 cortisone의 혈색소의
발성과 적절한 항체의 실험과, estrad
온 Hall의 방법을 이용했는데, Fig. 2와 같은 flow sheet에 따라 석적하였다. 즉, steroids의
抽出率를 얻기 위하여 血清에 1nCi의 1H-estradiol-17β와 1H-progesterone를 添加하여, vortex
mixer로 混伴한 후, 다시 diethylether 10ml를 添加하여 세차례 混伴한 다음, 15分間 室温에서 放
置하여 ether로 取出し하였고, dry ice aceton
box에 넣어 얼린 후 ether로 倒去 50℃로 固定한 Brinkman SC/48 S concentrator
에 넣어 ether로 蒸発시키고 남은 dry extract를
2ml의 assay buffer로 再度取去하여 抽出率 검査
時 反春測定을 위하여 0.5ml에 2tube로 만든다음
tracer 100μl와 antiserum 100μl를 添加하여 體
量이 700μl가 되게하고 antiserum의 濃度가 estr
radiol- 17β는 1 : 56,000, progesterone은 1 :
70,000이 되도록 하였다. 混合液은 vortex mixer
로 混伴시킨 후, 4℃에서 16～24시간 incubation 시
かった. 이때 standard curve를 얻기 위하여 各各
의 standard form을 分離하기 위하여 dextran
coated charcoal suspension를 0.2ml添加하여 完
全히 混伴한 後에 4℃에서 15分間 放置한 다음 4℃
로 調節된 速心分離器로 5分間 500g의 速度로 速
沈시었다. 上層液을 scintillation vial에 음기고 scintillation fluid 10μl를 添加하여 混合한 다음
1時間以上을 安定시키고 counter(Packard,
Tricrab scintillation, Spectrometer model 2450)
로 bound form을測定하였다.

結果 및考察

1. 대저의 繁殖形質

未産豚의 各種 繁殖形質은 Table 1에서 보
눈巴巴와 같다. 性成熟 到達日齡은 173日で 188日
的範圍로 平均 179.5日로서, 性成熟 日齢이
200～210日齢이라는報告21)보다는 약간 빠른 傾
向이었으며, Landrace種의 性成熟 到達日齢이173
日程度라고 한報告9)와는 완 一致하는 結果었다.

性成熟 到達體重은 84kg에서 94kg의範圍로서
平均88.2kg이었는데, 이 結果는 性成熟 到達體重
이 55kg이라는報告19)나 120kg 以上이라는報告30)
와는 差異이 있었으며, 制限飼養時 性成熟 到達
體重이 74kg, 無制限飼養時에는 90～94kg이라는
Anderson과 Melampy35)의報告와는 비슷한 傾向
이었다.

發情週期는 18日에서 23日의範圍로 平均 21.3
日였는데 이는 19日～23日(平均21日)의範圍라
는 Anderson29)의報告와 잘 一致하고 있다.

妊娠期間은 平均114日를 나타냈는데 이 結果는
妊娠期間이 제거의 品種, 腹胎產仔數 및 季節에
따라 腹部的差異이 있으나 全體로 112～116日로
서 相當히正確하다는 여러報告5,6,11)와 잘 一致
하는 結果었다.

本實験에서의 腹胎產仔數는 平均 9.5頭로서, 初
産豚의 腹胎產仔數는 品種間에 明显의差異点을 나
타내며, Dutch Landrace 9.4頭, Dutch Large
White 9.9頭, American Duroc 9.8頭, Belgian-
Landrace 7.6頭는의 Brascamp等7)의報告와 비
슷한 結果라고 考察된다.

2. 發情週期中的 血清性 peptide hormone의 变化

發情週期 동안에 血清中 LH, FSH 및 prolact

<table>
<thead>
<tr>
<th>Serum sample + 1 nCi 1H-hormone (Estradiol 1ml, progesterone 0.5ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction with 10ml diethylether. Separating (serum ether) 15min. room temperature</td>
</tr>
<tr>
<td>Serum freezing in dry ice</td>
</tr>
<tr>
<td>Evaporation of ether, 50℃ in Brinkman concentrator</td>
</tr>
<tr>
<td>Redissolving dry extract, with 2.0ml assay buffer</td>
</tr>
<tr>
<td>Addition of 100μl tracer and 100μl antiserum</td>
</tr>
<tr>
<td>Incubation 4℃, 16～24 hours</td>
</tr>
<tr>
<td>Separation of free and bound form</td>
</tr>
<tr>
<td>Mixing, 0.2ml supernatant and 10ml counting solution</td>
</tr>
<tr>
<td>Counting and calculation</td>
</tr>
</tbody>
</table>

Fig. 2. Flow sheet for radioimmunoassay of sex steroid hormones.
Table 1. Age and body weight at puberal estrus, estrous cycle, gestation length and litter size in the experimental gilts.

<table>
<thead>
<tr>
<th>Gilt No.</th>
<th>Age at puberal estrus, day</th>
<th>Body weight at puberal estrus, kg</th>
<th>Estrous cycle, day</th>
<th>Gestation length, day</th>
<th>Litter size, head</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>178</td>
<td>87</td>
<td>23</td>
<td>114</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>188</td>
<td>94</td>
<td>22</td>
<td>114</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>173</td>
<td>88</td>
<td>22</td>
<td>112</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>182</td>
<td>86</td>
<td>18</td>
<td>114</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>183</td>
<td>90</td>
<td>22</td>
<td>114</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>176</td>
<td>84</td>
<td>21</td>
<td>116</td>
<td>10</td>
</tr>
<tr>
<td>Mean</td>
<td>179.5</td>
<td>88.2</td>
<td>21.3</td>
<td>114.0</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Table 2. Levels of LH, FSH and prolactin in serum from gilts throughout the estrous cycle.

<table>
<thead>
<tr>
<th>Days from estrus</th>
<th>LH (mIU/ml)</th>
<th>FSH (mIU/ml)</th>
<th>Prolactin (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>estrus</td>
<td>< 1.56a</td>
<td>< 1.25b</td>
<td>< 2.4c</td>
</tr>
<tr>
<td>3</td>
<td>< 1.56</td>
<td>< 1.25</td>
<td>< 2.4</td>
</tr>
<tr>
<td>6</td>
<td>< 1.56</td>
<td>1.90 ± 0.15</td>
<td>< 2.4</td>
</tr>
<tr>
<td>9</td>
<td>< 1.56</td>
<td>2.20 ± 0.54</td>
<td>< 2.4</td>
</tr>
<tr>
<td>12</td>
<td>< 1.56</td>
<td>1.86 ± 0.25</td>
<td>< 2.4</td>
</tr>
<tr>
<td>15</td>
<td>< 1.56</td>
<td>1.50 ± 0.16</td>
<td>< 2.4</td>
</tr>
<tr>
<td>18</td>
<td>< 1.56</td>
<td>< 1.25</td>
<td>< 2.4</td>
</tr>
</tbody>
</table>

a: below 1.56mIU/ml
b: below 1.25mIU/ml
c: below 2.40mIU/ml

全発情週期 同じ部位の LHの濃度は 1.56mIU/ml 以下であり、prolactinの濃度は 2.40ng/ml 以下として、分相限界値以下を示しました。FSHの濃度発情開始後 6日から 15日まで 1.50～2.20mIU/ml 水準を示しました。発情開始 3日から発情後 4日まで 1.25mIU/ml 以下として、分相限界値以下を示しました。

以上の結果を踏まえて、血漿 LHの水準が発情前 1日まで発情後 15日まで、5日で 0.5～1.0ng/mlの値、相当の水準を示した。Esbenshade等の報告と同様に、preovulatory surgeが発情前 1日から発情日まで火点とされているに、経験的に示す結果は、観察結果と一致するので、発情前後 FSHの放出量が著しく増加するようであると報告した。本研究の結果は、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考え方に基づいており、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考え方に基づいており、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考え方に基づいており、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考え方に基づいており、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考え方に基づいており、発情週期の LH、FSHおよびprolactinの分泌機器を定義するための基礎となる考慮に値する。

3. 発情週期中の体液性steroid hormoneの変化

発情週期同様の血清 progesterone, estradiol-17β及びcortisolの変化は Table 4で示すところである。progesteroneの濃度は発情開始後 3日齢に 13.1ng/mlであり、その後漸次増加し、9日齢に最高水準を示し、35.10ng/mlを示すことが示唆され、減少する傾向を示す。発情日に発情荷重を 1.90
Table 3. Levels of progesterone, estradiol-17β and cortisol in serum from gilts throughout the estrous cycle.

<table>
<thead>
<tr>
<th>Days from estrus</th>
<th>Progesterone (ng/ml)</th>
<th>Estradiol-17β (pg/ml)</th>
<th>Cortisol (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>estrus</td>
<td>1.90 ± 0.03</td>
<td>27.2 ± 0.0</td>
<td>62.37 ± 6.15</td>
</tr>
<tr>
<td>3</td>
<td>13.10 ± 0.05</td>
<td>< 27.2 a</td>
<td>43.45 ± 5.96</td>
</tr>
<tr>
<td>6</td>
<td>21.56 ± 0.24</td>
<td>< 27.2</td>
<td>24.65 ± 3.42</td>
</tr>
<tr>
<td>9</td>
<td>35.10 ± 0.75</td>
<td>< 27.2</td>
<td>25.20 ± 2.75</td>
</tr>
<tr>
<td>12</td>
<td>18.25 ± 1.90</td>
<td>< 27.2</td>
<td>28.57 ± 3.36</td>
</tr>
<tr>
<td>15</td>
<td>17.65 ± 1.35</td>
<td>< 27.2</td>
<td>27.50 ± 2.15</td>
</tr>
<tr>
<td>18</td>
<td>8.04 ± 0.25</td>
<td>27.2 ± 0.0</td>
<td>42.15 ± 4.97</td>
</tr>
</tbody>
</table>

LSD (5%) 4.26 — 6.99

a: below 27.2 pg/ml

ng/ml를 나타냈다. 이와 같은 결과는 progesterone의 농도가 발정 시점 1.90 ± 0.03 ng/ml로 나타났으나, 3일째에 13.10 ± 0.05 ng/ml로 증가하였다는 Esbenshade et al의 보고에 의하면, 발정 첫날의 6일째에 21.56 ± 0.24 pg/ml로 나타났으며, 9일째에 35.10 ± 0.75 pg/ml로 나타났다. 그리고 12일째에 18.25 ± 1.90 pg/ml로 나타났으며, 15일째에 17.65 ± 1.35 pg/ml로 나타났다. 18일째에 8.04 ± 0.25 pg/ml로 나타났다. 이와 같은 결과는 Gomes et al, 30, 38, 45의 보고와 보조 progesterone의 난포 촉진의 농도가 10일째에 최다 수준이었으며, 13일째에 그 수준이 높았고, 15일째에 그 수준이 높았다. 그러나, Gomes et al, 30, 38, 45의 보고와 보조 progesterone의 난포 촉진의 농도가 8일째에 최다 수준이었으며, 12일째에 그 수준이 높았고, 15일째에 그 수준이 높았다. 또한, Gomes et al의 연구에서 progesterone의 난포 촉진의 농도가 8일째에 최다 수준이었으며, 12일째에 그 수준이 높았고, 15일째에 그 수준이 높았다. 이와 같은 결과는 Henricks et al, 39, 46의 보고와 비교하여 보조 estradiol과 prolactin의 농도가 증가하게 되었다. 또한, Gomes et al의 보고와 비교하여 progesterone의 난포 촉진의 농도가 증가하게 되었다. 이와 같은 결과는 Henricks et al의 보고와 비교하여 progesterone의 난포 촉진의 농도가 증가하게 되었다.

4. 妊娠期間中의 血清性 peptide hormone의 變化

妊娠期間中에 血清 LH, FSH 및 prolactin의 變化는 Table 4에 나타남바와 같다. 妊娠期間 중의 LH의 농도는 3.10~4.37 mIU/ml의 範圍을 나타내고 있다. 가. 여. 本實驗의 血清 hormone 농도는 1.56 mIU/ml을 나타내며, 하. 妊娠期間中의 LH의 농도는 3.10~4.37 mIU/ml을 나타내고 있다. 이는 Gomes et al의 보고와 비교하여 보조 estradiol과 prolactin의 농도가 증가하게 되었다. 품. 14일 이후의 黃體維持에 LH가 関係한다.

 또한, Gomes et al의 보고와 비교하여 보조 estradiol과 prolactin의 농도가 증가하게 되었다. 이는 Gomes et al의 보고와 비교하여 보조 estradiol과 prolactin의 농도가 증가하게 되었다.
Table 4. Levels of LH, FSH and prolactin in serum from gilt during pregnancy and at parturition.

<table>
<thead>
<tr>
<th>Days from mating to farrowing</th>
<th>LH (mIU/ml)</th>
<th>FSH (mIU/ml)</th>
<th>Prolactin (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4.07 ± 0.75</td>
<td>1.50 ± 0.10</td>
<td>6.70 ± 1.20</td>
</tr>
<tr>
<td>30</td>
<td>3.50 ± 0.40</td>
<td>1.33 ± 0.08</td>
<td>4.77 ± 1.25</td>
</tr>
<tr>
<td>45</td>
<td>4.00 ± 0.01</td>
<td>1.40 ± 0.13</td>
<td>5.70 ± 1.00</td>
</tr>
<tr>
<td>60</td>
<td>3.50 ± 0.30</td>
<td>1.30 ± 0.08</td>
<td>5.57 ± 0.15</td>
</tr>
<tr>
<td>75</td>
<td>4.17 ± 1.25</td>
<td>1.80 ± 0.53</td>
<td>3.37 ± 0.34</td>
</tr>
<tr>
<td>90</td>
<td>4.37 ± 0.65</td>
<td>1.40 ± 0.13</td>
<td>6.17 ± 1.92</td>
</tr>
<tr>
<td>105</td>
<td>3.10 ± 0.01</td>
<td>1.40 ± 0.13</td>
<td>2.60 ± 0.22</td>
</tr>
<tr>
<td>at parturition</td>
<td>3.10 ± 0.70</td>
<td>1.33 ± 0.75</td>
<td>4.90 ± 1.19</td>
</tr>
<tr>
<td>10*</td>
<td>2.50 ± 0.93</td>
<td>1.40 ± 0.13</td>
<td>4.00 ± 0.95</td>
</tr>
</tbody>
</table>

LSD (5%) | 1.07 | 0.28 | 1.88 |

* a: days postpartum

Table 5. Levels of progesterone, estradiol-17β and cortisol in serum from gilt during pregnancy and at parturition.

<table>
<thead>
<tr>
<th>Days from mating to farrowing</th>
<th>Progesterone (ng/ml)</th>
<th>Estradiol-17β (pg/ml)</th>
<th>Cortisol (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>38.90 ± 0.70</td>
<td>27.20 ± 0.01</td>
<td>17.15 ± 5.45</td>
</tr>
<tr>
<td>30</td>
<td>26.40 ± 0.01</td>
<td>31.57 ± 3.25</td>
<td>16.00 ± 3.06</td>
</tr>
<tr>
<td>45</td>
<td>25.77 ± 3.15</td>
<td>40.27 ± 5.45</td>
<td>13.86 ± 3.35</td>
</tr>
<tr>
<td>60</td>
<td>24.50 ± 1.90</td>
<td>56.07 ± 6.15</td>
<td>13.58 ± 1.99</td>
</tr>
<tr>
<td>75</td>
<td>17.10 ± 3.00</td>
<td>137.10 ± 6.50</td>
<td>20.00 ± 3.85</td>
</tr>
<tr>
<td>90</td>
<td>18.86 ± 2.75</td>
<td>255.68 ± 5.45</td>
<td>21.24 ± 4.36</td>
</tr>
<tr>
<td>105</td>
<td>16.87 ± 4.25</td>
<td>544.87 ± 32.65</td>
<td>22.31 ± 3.65</td>
</tr>
<tr>
<td>parturition</td>
<td>1.30 ± 0.01</td>
<td>620.17 ± 32.65</td>
<td>24.35 ± 5.76</td>
</tr>
<tr>
<td>10*</td>
<td>1.27 ± 0.07</td>
<td>29.40 ± 1.10</td>
<td>16.77 ± 2.97</td>
</tr>
</tbody>
</table>

LSD (5%) | 5.99 | 22.33 | 6.41 |

* a: days postpartum

보다 낮은 수준을 나타냈으며, 특히 분화시의 prolactin 수준인 124.2 ~ 147.3 ng/ml과는 관련한
差異점은 확립할 수 있었다. 그리고, 본 실험
의 발정유기의 중도 2.4ng/ml 미만으로 보다는 관련
의 높은 수준은 나타내고 있어 분화시의 중도
이 흙무대의 지능은 prolactin에 의하여 증가
된다는 보고[13]나, prolactin의 중도는 분화시까지
가용 순서로 관찰되어 97%가 관하여 있다는
보고[14]와 어떤 차이가 있지 않나 생각되지만 좀
더 연구 필요이 되어야 할 것으로 사료된다.

5. 妊娠期間의 血清性 steroid hormone의 比変

妊娠期間중의 血清 progesterone, estradiol-17β 및 cortisol의 增減는 Table 5에 나타난 바와
같다. Progesterone의 濃度는 妊娠 15일에 38.90
ng/ml로 最高水準을 나타내고, 妊娠 30日에는 26.
40ng/ml로 急激히 減減少했으며, 그후에도 処續
減少하여 分娩가 가까운 時期로 妊娠 105일에는 16.85
ng/ml까지 減減少하였고, 分娩時 progesterone의
濃度は 1.30ng/ml로, 最高水準を 나타낸다.

結果는 妊娠維持を 위해서는 血中 progesterone의
濃度が 6ng/ml 이상이며 양 4ng/ml 이하이
면 妊娠維持가 되지 않는다는 Ellicot와 Dziuk[17]
이 보고한 妊娠豚에서 progesterone濃度의 減少
는 분娩 1 2일 내에 이루어진다는 여러 보고 4 39, 40, 41, 42, 43, 44, 45 그리고 PGF2α에 의한 분娩 촉진은 progesterone의 농도를 10~19ng/ml에서 분娩시 3~4ng/ml로 느끼게 되는 사례 10, 37, 49 중 하나로 보소하고 있다. Estradiol-17β의 농도는 폭포 15일이 27.20ng/ml 이상으로 본 실험의 분명기 동안의 농도를 나타내고 있으며, 그후 계속 증가하여 폭포 75일부터 점차적으로 증가를 나타냈다. 분娩시에는 620.17ng/ml로 최고 농도를 나타내고, 분娩 후 15일부터는 폭포 15일 농도로 감소하였다. 이와 같은 결과는 산소 염증에 보통의 에스토스토르 오스테스트로이드 농도가 분명기 12~17일에 5 μg/ml인 뿐이 분娩 12~17일에는 20 μg/ml로 상대적으로 높다는 Moejion 등 39의 보고와 estrogens은 산소나 분명기간의 발생에서 estradiol의 농도를 유지하고 추가 주어지는 농도 20, 21, 22, 33, 41, 42의 비교해 볼 때 비슷한 농도를 나타내었다고 고찰된다. 그리고, 분娩은 분만의 초기에 estradiol의 농도가 감소하고 progesterone의 농도가 증가한다. 그리고 이와 같은 결과는 Estradiol-17β의 농도는 폭포 15일이 27.20ng/ml로 최고 농도를 나타내고, 분娩 후 15일부터는 계속 증가하여 분娩시 620.17ng/ml로 나타났으며, 그후 계속 증가하여 분娩시 27.20ng/ml로 나타났으며, 그후 계속 증가하여 분娩시 620.17ng/ml로 나타났다. Cortisol 농도는 분娩 직후 농도 17.15ng/ml이었고, 그후 계속 증가하여 분娩시 24.35ng/ml로 최고 농도를 나타내었다. 분娩 후 15일에는 다시 16.77ng/ml로 감소하였다. 분娩 기간에 걸쳐 cortisol의 농도는 본 실험의 분명기 동안의 농도보다 낮은 농도를 나타내었으며, 이에 관하여는 자궁 및 자궁의 대식과 골다중이 높은 것으로 설명되었다.

본 연구는 Landrace 종의 6.15주가 되고 분娩기 간격에 분娩과 간격 동안의 농도에서 호르몬의 변화를 단계적으로 지속하였다. 염증에서는 비흡수홍 감소하여 분娩과 분리한 후, 이를 투여하여 LH, FSH, prolactin, progesterone, estradiol-17β 및 cortisol을 radioimmunoassay 방법으로 분리하였으며, 그 결과를 요약하여 다음과 같다.

1. Landrace 종은 6.15주가 되고 분娩기 간격은 179.5일, 성가능확률은 88.2kg, 분娩기 간격은 21.3일, 폭포기간은 141일이었다. 임신중 동안, 산소의 분리로

참 고 文 献

