Analysis of the Water Temperature Stratification-Maintaining Conditions Using CFD in Case of Intake of Deep, Low-Temperature Water

Lee, Jin-Sung*, Cho, Soo**, Sim, Kyung-Jong***, Jang, Moon-Soung****, Sohn, Jang-Yeul*****

*Dept. of Architecture Engineering, Graduate School, Hanyang University (truestar@kier.re.kr), **Korea Institute of Energy Research (scho@kier.re.kr), ***Samyoung CO. Ltd (skj9832 paran.com)
****Korea Water Resources Corporation (C1025214@hanmail.net)
*****Dept. of Architectural Engineering, Hanyang University (ysohn@hanyang.ac.kr)

Abstract

This study was conducted to forecast inner water temperature strata change by extracting deep water from a dam. For the methodology, the scope wherein the balance between the volume of low-temperature water intake through the virtual water intake opening as installed within the stored water area and the volume of water intake from the surrounding area is not destroyed was calculated through the CFD simulation technique using the computational fluid dynamics (CFD) interpretation method. This study suggested a supplementary method (diffuser) to avoid destroying the water temperature strata, and the effect was reviewed. In case of intake of the same volume, when the velocity of flow of water intake is reduced by increasing the pipe diameter, the destruction of water temperature strata can be minimized. When the area (height) where the intake of water is possible is low, a diffuser for interrupting the vertical direction inflow should be installed to secure favorable water intake conditions in case of water intake on the upper part. This study showed that there was no problem if the intake-enabled, low-temperature area was secured approximately 10m from the bottom when the scope that does not destroy the water temperature strata in case of water intake was forecast using the regression formula.

Keywords: Dam (Dam), Stratification (Stratification), CFD (Computer Fluid Dynamic), Deep Cold Water (Diffuser)
1. 서 론

1.1 연구의 배경 및 목적

기존 건축물 에너지 소비 비율 중 난방이 차지하고 있는 부분이 월등하였으나 지구온난화의 영향으로 인한 평균기온의 상승과 고기온·고단열화로 내부 발생량 증가에 따른 건물 내부 온도상승, 거주자의 적극 요구조건 증가 등으로 인하여 방송에너지에 대한 수요가 지속적으로 증가(김지혜, 2006)하고 있다. 상기된 에너지 위기에 대응, 환경 오염의 방지, 거주자 요구성능의 향상 등에도 이로 인해 건축물에서 신재생에너지 및 미활용에너지는 활용에 대한 관심과 대책이 마련되고 있다. 이러한 움직임의 일환으로 전국에서 보면 효수가 보유하고 있는 지온의 삼중수를 건물의 난방을 위한 방송에너지로 활용하는 방안에 대한 연구 및 실용화가 이루어지고 있으나 국내의 경우 기술적, 경제적 제한으로 인하여 에너지원에 대한 대상 확대 및 연구가 극히 드물며 활용에 필요한 기반 연구가 아직 부족한 것이 현재의 실정이다. 해수와 효수 및 하천수 등의 자연수를 이용한 방송방식은 화석에너지 대체할 수 있는 방송방식으로 인식되고 있으며 일본 등에서는 기후변화협약에 대응할 수 있는 기술로 개발받고 있다.

1.2 연구의 필요성

외기온 및 수심에 의해 변동하는 연직 수온분포 상황하에서 난방에 의해 인공적으로 생성된 효수의 삼중수 영역에 존재하는 저온수를 방송시스템의 열원으로 활용(John J. 2005)하기 위해서는 수온의 성층화가 파괴되지 않는 한계 취수가능 수량을 확인해야만 한다.

해수 및 규모가 큰 호수의 경우 수온약층을 경계로 하부에 존재하는 삼중수의 영역의 크기, 즉 바닥면으로부터의 높이가 높기 때문에 취수시 삼중수의 상부에 존재하는 수온이 약층 영역내의 물이 혼합되어 취수될 가능성 이 줄어들게 된다. 하지만 본 연구의 대상이 되는 빌딩장수의 경우 수심확보에 한계가 있으며 이에 따라 삼중수 영역의 크기 역시 소규모로 나타나게 된다. 방송시스템 운전을 위해 취수량을 일정 규모 이상으로 증가 시킬 경우 상부에 존재하는 수온이 높은 수온 약층 구역의 물이 취수될 수 있으며 이는 열교환기의 운전 효율 감소 및 보조열원 장치 추가 설치 및 설비 기기의 달당 부하량 증가 등의 문제를 발생시킬 수 있다.

또한 대상온도를 갖고 있는 저온수 영역의 수량은 모두 방송운전으로 이용할 수 없으며 취수관의 관류 및 수순 속도 등의 조건 변화에 의해 수온의 성층화가 파괴될 수 있기 때문에 각 조건별 취수 가능량을 사전에 파악해야만 한다.

따라서 본 연구에서는 난방기에 주로 활용될 저온수의 연직방향으로 수온이 충상으로 분포하는 것(이성, 2005)을 근거로 하여 취수 가 가능한 파이프의 직경과 설치위치 문제를 해결방안에 대한 연구를 수행하였다. 이를 위해 전산유체 해석기법을 활용하여 저장수 영역내에 설치된 가상의 취수구를 통해 취수되는 저온수의 양과 추면으로부터 유입되는 양의 균형이 파괴되지 않는 병렬 CFD 시뮬레이션 기법을 통해 산정하였다. 또한 수온성층을 파괴하지 않기 위한 부가적인 방법을 제안하였으며 그에 대한 효과를 검토하였다.

2. 전산유체 해석을 활용한 취수 가능 수량 파악

2.1 전산유체 모델 개요

본 연구에서는 빌딩의 삼중수 수출로 인한 내부 수온층의 변화를 예측하기 위하여 수치해석 모델을 설정하고 삼중수의 배출 속도에 따라
큰 태양광 발전을 위한 수치해석의 흐름을 파악하기 위해 수치해석 방법을 이용하여 수집하였다. 수치해석 수치해석을 사용한 프로그램은 2D/3D의 복잡한 형상을 갖는 공간에서의 열전달, 공기유동, 상변화 및 화학반응에 관련된 유동현상을 수치적으로 해석하기 위해 활용되었다.

2D/3D의 복잡한 형상을 갖는 공간에서의 열전달, 공기유동, 상변화 및 화학반응에 관련된 유동현상을 수치적으로 해석하기 위해 플루언트 프로그램(Fluent)을 이용하였다.

2.3 적분 방정식 설정
본 연구에서는 녹색 배양지에 인공적으로 저장되어 있는 물의 유동특성 해석을 위하여 유동현상을 기술하는 적분방정식에 대하여 정적상태 비압축성 난류유동으로 가정한다. 이에 다음과 같은 보수방정식을 설정하였다.

\[
\frac{\partial}{\partial x_i}(\rho u_i) = 0
\]

나) 운동량 방정식
\[
\frac{\partial}{\partial x_i}(\rho u_j u_i) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_i} \left(\frac{\partial\tau_{ij}}{\partial x_j} \right) + S_u
\]

다) 난류에너지 방정식
\[
\frac{\partial}{\partial x_j}(\rho u_i u_j) = \frac{\partial}{\partial x_j} \left(\mu + \mu_t \frac{\partial \epsilon}{\partial x_j} \right) + \mu_r G - \rho e
\]

라) 에너지 방정식
\[
\frac{\partial}{\partial x_j}(\rho u_i C) = \frac{\partial}{\partial x_j} \left(\mu + \mu_r \frac{\partial T}{\partial x_j} \right) + S_T
\]

3. 시뮬레이션 방법
3.1 모델링 구성
Fluent을 이용하여 시뮬레이션을 수행하기 위한 작업으로 정적상태별(pre-processing)로 Gambit Ver2.2.1을 이용하여 태양광장의 형상을 20m×20m×10m(거로×세로×높이)의 육면체의 탱크 형상으로 그립 1과 같이 모델링하였다.
취수 용량 및 파이프의 관경은 현재 설치 되어 운영되고 있는 해수 및 호수의 저온수를 이용하는 냉방시스템 용량 대비 파이프의 관경, 취수량 구성을 등에 기존의 자료에 의거하여 선정하였다.

![그림 1. 모델 형상 및 온도 해세 구성](image)

선정된 취수용량은 분당 60톤으로 설정하였으며 취수파이프의 관경은 1,000mm와 1,600mm 두개의 타입으로 선정하였다. 취수용량은 고정되어 있기 때문에 관경의 증감에 따라 유속이 변경되는 형태로 구성된다.

<table>
<thead>
<tr>
<th>유속 [m/s]</th>
<th>관경 [mm]</th>
<th>취수량 [t/분]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1,000</td>
<td>60</td>
</tr>
<tr>
<td>1.0</td>
<td>1,600</td>
<td>120</td>
</tr>
</tbody>
</table>

취수구 발단의 형태(취수구 방향)는 취수파이프가 저장수의 바닥에 설치하기 때문에 발단의 높이에 따라 위치가 달라질 수 있다. 이러한 위치에 따라 취수방향이 Inlet방향과 동일 방향일 때 발생할 수 있는 시뮬레이션의 관점은 제거하기 위해 상부 방향에서 취수하는 형태로 구성하였다. 파이프 취수방향의 반대편 전체 면을 묶어 유입되는 Inlet으로 설정하였으며 물을 취수하는 파이프를 Outlet으로 선정하였다. 파이프의 설치 위치는 모델링 가로, 세로 방향의 중앙점에 위치시켰으며 물의 흐름방향과 취수방향을 동일하게 설정하여 중심부와 한쪽 끝 단면까지 배관형상을 모델링하였다.

3.2 모델링 구성 변경 조건
기본적인 모델링 형태에 취수구의 높이를 변경시켰을 때 발생되는 수온 성층변화를 확인하기 위하여 두개의 관경에 각각 취수구 발단과 발단의 높이로 부터의 각각 거리를 다르게 구분하여 분석을 실시하였다. 또한 수직방향의 취수구 형태로 인하여 발생되는 상층부의 직접유입을 차단하기 위한 제안으로 취수구발단의 상부에 관경의 구조물(Diffuser)을 설치하는 모델을 추가로 구성하였다.

<table>
<thead>
<tr>
<th>구분</th>
<th>관경 [mm]</th>
<th>바닥으로부터 취수구 발단 높이 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>case-1</td>
<td>1,000</td>
<td>3,000</td>
</tr>
<tr>
<td>case-2</td>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>case-3</td>
<td>1,600</td>
<td>3,000</td>
</tr>
<tr>
<td>case-4</td>
<td>1,600</td>
<td>4,000</td>
</tr>
<tr>
<td>case-5</td>
<td>1,000</td>
<td>3,000</td>
</tr>
<tr>
<td>case-6</td>
<td>1,000</td>
<td>4,000</td>
</tr>
<tr>
<td>case-7</td>
<td>1,600</td>
<td>3,000</td>
</tr>
<tr>
<td>case-8</td>
<td>1,600</td>
<td>4,000</td>
</tr>
</tbody>
</table>

각 모델링 조건에 따라 표 2와 같이 수직 방향 취수방지 장치(Diffuser)의 유무, 관경, 발단으로부터의 취수구 발단 거리에 따라 8개의 Case를 나누어 시뮬레이션 분석을 실시하였다.

3.3 경계조건 구성 변경 조건
(1) 해석 대상의 입력 경계조건
본 연구에서는 냉실 액저장용 내부의 유효층과 비교한 온도중을 형성하기 위해 모델링 형태의 유효면과 아랫면을 Boundary Type에서 Top
설명과 Bottom Wall로 지정하고 그림 2와 같이 12개의 층으로 구분하였으며 구분된 층별로 온도를 다르게 설정하였다. 온도조건은 하계 연중 수온분포 변동양상을 근거로 하였으며 계일 낮은 레벨의 온도는 5℃로 설정하였다. 레벨이 증가할 때마다 0.2℃의 온도상승 조건으로 최고 레벨인 12에서는 7.2℃로 수온의 경계조건을 입력하였다. 레벨 1의 하단부는 레이프가 설치된 구역으로 높이를 크게 설정하였다. 모든 층의 유입속도는 0.01m/s로 동일하다.(표 3 참조) 이는 시뮬레이션 수행시에 Inlet 방향에서 유입되는 물의 속도로 경계조건을 설정하지 않을 경우, 원활한 해석이 불가능함에 따라 Inlet부의 유속속도를 0.01m/s로 일정하게 유입시켰다. 또한 Outlet은 압력에 의한 자연적인 유출로 경계조건으로 설정하였다.

<table>
<thead>
<tr>
<th>Inlet Velocity (m/s)</th>
<th>Outlet Pressure (단위: kPa)</th>
<th>Pump 유속속도 (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1,000 mm</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>1,500 mm</td>
<td>0.7</td>
</tr>
</tbody>
</table>

취침구의 경계조건은 동일한 수량을 취수 하는 방식이기 때문에 관계에 따라서 유량(Q)을 면적(A)으로 나누어 유속(V)을 구하였다. 관계는 유속은 표 3에 나타내었다. 전술한 바와 같이 다양한 모델링과 경계조건에 의해 대상 모델링 구역에서의 온도분포를 3D 수치해석을 통하여 결과를 가시화하고 분석하고자 하였다.

(2) 수직유일 방지 장치(Diffuser) 모델링
취수구 상부의 직접 취수로 인한 성출파괴를 차단하기 위하여 취수구 맨앞에 저온수의 Diffuser를 설치한 모델을 제안하여 추가로 구성하였다. 장치의 크기는 가로, 세로 각각 2,000mm 크기의 정사각형 형태이다.
Diffuser를 얇은 판의 형태로 설치했을 때 나 타날 수 있는 와류발생을 제거하기 위하여 두께를 500mm로 설정하였다. 장치의 취수구로부터의 이격거리는 취수구와 바닥면의 이격거리와 상관없이 취수구면으로부터 2,000mm로 일정한 이격거리를 두었으며 취수구 중심에 Diffuser의 중심을 맞추도록 구성하였다.

(3) 격차량 구성
전처리(pre-processing) 프로그램인 Gambit을 이용하여 전체 해석 대상을 각 절차 각격으로 형성하였다. 사용된 격차량은 취수구의 높이, Diffuser의 설치에 따라 적절 격차량에 따라 각계 격차량이 다르게 나타났으며 평균적으로 약 475,000개 가량을 나타내었다.

4. 결과 및 분석
4.1 취수환경 및 높이별 수온 성층 변화
동일한 연직 수온분포를 나타내고 있을 때 관계의 변화에 따라 발생되는 수온성 변화양상을 파악하기 위하여 CFD 시뮬레이션을 실시하여 분석을 하였다.

![그림 2. 취수 높이 변화](image)

취수 관계의 크기는 2가지 조건으로 분류하여 시뮬레이션을 실시하였다. 그림 2와 같이 동일한 5℃의 수온영역인 Level 1에 파이프가 설치되며 바닥면으로부터 3m와 4m 떨어진 지점에 취수구 앞단 위치를 변경하여 시뮬레이션을 실시하였다. 또한 취수구의 관계를 1,000mm와 1,600mm로 구분하여 분석하였다.
(1) 상향 개방 취수 방식
그림 3은 취수구를 상부 개방한 상태와 Diffuser 를 설치했을 때의 각 캐이스별 수온분포를 나타낸 그림이며 수온 분포 확인 지점은 취수 파이프를 기준축으로 하여 수직단면(취수파이프 종단면)을 나타낸 것이다.
취수구의 밀단높이가 3m일 때 관경 1,000mm (case 1)의 경우에는 취수구의 유입속도가 관경 1,600mm(case 3)에 비해 높기 때문에 상층부 전체가 구획된 층별로 온도변화가 모두 발생되며 취수구 방향으로 급격하게 수온 이 상승하는 것을 확인할 수 있다. 또한 취수구를 지난 이후 상부 방향으로 저온의 물이 이동하고 있으며 하부쪽으로 취수파이프 하단부까지 5.6℃의 수온을 나타내는 물이 유입되는 것으로 나타났다. 취수구 밀단의 높 이를 바닥면으로부터 4m 이격시 발생되는 수온층 변화를 그림 3(c)와 (d)에 나타내었 다. 바닥으로부터 3m에 취수구를 설치했을 때 1,000mm(case 1) 관의 경우 모델링의 하단부까지 확대된 상층부의 수온확대 현상 이 4m(case 2) 지점 취수시에는 발생하지 않음으로 생각하였다.

그림 3. 취수파이프 기준 종단 방향의 10m의 단면 온도 분포

36
앞면 Level 12의 수온 7.2℃의 영역이 취수구 망간까지 확대되는 현상을 나타냈다. 이는 취수구의 영향이 하단부를 확대되던 수온증 변화를 상쇄시켜 나타난 현상이라 판단된다. 1,600mm 관의 경우 높이 3m(3개의) 취수와 4m(3개의) 취수간의 수온 분포상에 큰 변화가 발생하지 않음을 확인하였다. 취수구의 위치가 상부로 옮겨가면서 취수구의 흡입유속이 높은 1,000mm 관경을 사용했을 때 취수구 상단의 수온증이 파괴되는 경향이 두드러지게 나타났다.

(2) 수직 취수방방정계치(Diffuser) 방식

전출된 취수 높이 및 취수구의 유입속도만을 변화시킨 모델링 구성에 시뮬레이션한 결과를 살펴보면 대소의 차는 있으나 취수구의 수직 상부를 기준으로하여 수온의 성충이 급격하게 파괴되는 것을 확인하였다. 이러한 문제 해결책으로 취수구의 수직상부에서의 직접 유입을 방지하기 위해 배관을 설치하여 승차한 모델링에 추가하여 수직상부의 직접 유입을 방지했을 때 나타나는 수온증 변화를 확인하였다. 때때로의 기간 유입 높이 변화는 기존 모델링과 동일하게 구성하였다.(그림 3 e-h 참조) Diffuser의 설치위치는 바닥면 기준으로 설치되지 않고 취수구 밀란을 기준으로 설치하였다. 따라서 취수구 밀란의 높이가 3m일 경우 방지장치의 높이는 5m이며 취수구 밀란높이가 4m일 경우에는 6m 위치에 설치되는 구조이다. Diffuser 설치시 취수구 상부의 물이 취수구로 직접 유입되는 현상이 발생하지 않았으며 수온층이 Inlet 경계조건과 유사하게 수온량향으로 이동하는 것을 확인할 수 있다. 관경 1,600mm에서 취수구 밀란상에 유속에 대한 영향으로 더 낮은 수온을 취수할 수 있는 것으로 나타났다. 그림 3 e와 f는 취수구 높이 3m의 수온층 변화 양상이며, 그림 6(g)와 (h)는 취수구 높이 4m 일때의 변화양상을 나타낸 것이다.

적절 취수방방식에 비해 상대적으로 상부 수온층이 취수구로 직접 유입되는 현상이 현저히 감소하였다. 그러나 관경변화에 따른 취수구 유속차로 인하여 1,000mm 관경 모델에 서 취수구 쪽으로 고온의 수온층 영역이 확대됨을 확인할 수 있다. Diffuser의 추가로 인해 취수구 후단 부분에 유체의 성충이 불규칙해지는 현상이 나타났지만 이는 취수구를 기준으로 수온성층을 파괴하는 것이기 때문에 문제가 없으며 초기 경계조건인 Inlet의 유속에 기반한 본 결과를 반영한다.

4.2 케이스별 취수 가능 영역 분석

각 케이스별 수평면 온도변화를 이용하여 바닥으로부터의 높이가 증가하였을 때 나타난 상층부의 수온 변화양상을 회귀식을 통하여 예측하였다. 취수구 수직 상부의 온도만을 이용하였으며 전출된 취수구를 기준으로 하여 바닥으로부터 5m와 7m지점의 온도와 초기온도조건인 0～5m 지점의 수온이 5℃를 이용하여 높이 변화에 따른 온도 변화 회귀식을 표 4와 같이 모델별로 산출하였다.

<table>
<thead>
<tr>
<th>표 4. 모델별 수온 변화 회귀식</th>
</tr>
</thead>
<tbody>
<tr>
<td>구분</td>
</tr>
<tr>
<td>Case 1</td>
</tr>
<tr>
<td>Case 2</td>
</tr>
<tr>
<td>Case 3</td>
</tr>
<tr>
<td>Case 4</td>
</tr>
<tr>
<td>Case 5</td>
</tr>
<tr>
<td>Case 6</td>
</tr>
<tr>
<td>Case 7</td>
</tr>
<tr>
<td>Case 8</td>
</tr>
</tbody>
</table>

표 5는 표 4의 회귀식을 이용하여 바닥면으로부터의 높이와 모델별 예상온도를 케이스별로 나타낸 것이다. 초기 경계조건의 수온 범위를 초과하지 않는 수온이 수온층을 파괴하지 않는 영역이 되며 Diffuser를 적용한 모델에서 취수가 가능 영역의 축소를 이룬다는
5. 결 론

본 연구에서는 저온수를 보유하고 있는 호수 등의 저항적 영역의 크기에 따른 실제 저온수가능 수량을 확인하기 위하여 CFD 해석 및 결과를 분석하였다. 결과는 다음과 같다.
(1) 하부의 첨적 유지를 방지하기 위한 상방향 흐름은 저온수 구조상부의 유입을 방해시켜 상층의 외부 전류를 쉽게 유발할 수 있다.
(2) 동일 응용을 취할 경우 관정을 필요하여 저온수 수단을 감소시킴 때 수온의 상층과표지를 줄일 수 있다.
(3) 저온수가 가능한 영역(높이)이 낮을 경우 상부 저온수에는 수질방향의 유입을 차단하는 장치가 설치되어야만 유리한 저온수조건을 확보할 수 있다.
(4) 본 연구에서 적용된 저온수유량인 1m³/sec의 경우 관정 1,600mm와 저온수 높이가 바닥으로부터 3,000mm이며, 수질유압방
지 장치를 적용했을 때 가장 안정적인 저온수의 저온수 가능하며 수온의 성층을 파괴하지 않는 범위는 적절한 것임을 이용하여 예측을 할 때 수온가능 저온수 영역이 바닥으로부터 10m를 확보
함으로 문제가 없는 것으로 나타났다.
(5) 필요 수온량을 충족시키며 저온수의 저온수 상태를 유지하기 위한 방안으로 저온수 존재 구역내에서 분산 수질을 할 경우 보다 안정적인 저온수의 저온수 가능할 것으로 예상된다.

후 기

본 연구는 한국수자원공사의 '대청댐 저온수 활용 지역에너지사업 태양정 조사' 용역에 의하여 수행되었음을 알립니다.

참 고 문 헌

1. 김지혜, 서승직, '기후온난화의 영향에 의한 건물의 방난방에너지 사용량예측', 한국태양에너지학회 논문집, 26(3), pp.119-125, 2007
2. 심경종, 박희문, 박인일, 조수, 김수열, 박
태근, '수온증을 고려한 저온수 저온수 기술
과 관련 연구', 대한설비공학회 하계학술
발표대회 논문집, pp.1285-1290, 2008
3. 이상, 김지철, '건물의 방난을 위한 해수열
와 관련 실험적 연구', 한국마린에너지
나이어링학회, pp.883-890, 2005
duction to Fluid Mechanics. 5th edition,
John Wiley & Sons, Inc., New York, Chi
chester, Weinheim, Brisbane, Toronto, Sin
gapore, 1998
5. John J. Cruz., Sea water air conditioning
for Tumon Bay, Guam, Guam power aut
hority. 2005