Screening of Potent Anti-dementia Acetylcholinesterase Inhibitor-containing Edible Mushroom *Pholiota adiposa* and the Optimal Extraction Conditions for the Acetylcholinesterase Inhibitor

Do-Yeon Kim, Sang-Min Bae, Sang-Min Han and Jong-Soo Lee*

Department of Biomedicinal Science and Biotechnology, Paichai University, Daejeon 35345, Korea

ABSTRACT: To develop a new anti-dementia acetylcholinesterase (AChE) inhibitor from edible mushrooms, AChE inhibitory activities were determined on water and ethanol extracts of various edible mushrooms from oriental medicine markets and agriculture markets. As a result, the 70% ethanol extract from *Pholiota adiposa* fruiting body had the highest AChE inhibitory activity of 30.6, and its water extract also had an AChE inhibitory activity of 23.8%. Therefore, we finally selected *P. adiposa* as a potent anti-dementia AChE inhibitor-containing mushroom. The AChE inhibitor of *P. adiposa* was maximally extracted when its fruiting body was treated with water for 3 hr at 70°C and 70% ethanol for 12 hr at 70°C, respectively.

KEYWORDS: Acetylcholinesterase Inhibitor, Anti-dementia, Ethanol extract, *Pholiota adiposa*

Introduction

Because of the significant increase in life expectancy over sixty-five years of age in Korea, dementia diseases have also increased. Some forms of dementia are caused by a lack of neurotransmitters. Acetylcholine is one of the neurotransmitters in the peripheral nervous system and central nerve system, and it is converted into choline and acetate by acetylcholinesterase (EC.3.1.1.7, AChE) [1, 2]. Therefore, AChE is a key enzyme in the pathophysiology of dementia.

Several AChE inhibitors as anti-dementia agents have been extracted and characterized from various plants or microorganisms including *Umbilicaria esculenta* [3], green tea [4, 5], *Securinega suffruticosa* [6], *Onosma hispida* [7], *Juglans regia* [2], the Chinese herb *Huperzia serrata* [8], etc. However, AChE inhibitors such as Galantamine, Rivastigmine, Donepezil, Tacrine and Memantine have been only approved by the FDA as drug therapy for dementia [9]. They also have some side effects including nausea and anorexia. Therefore, research on development of new anti-dementia agents with high efficacy and no side effects is necessary.

Meanwhile, bioactive compounds from mushrooms have been reported for their health-stimulating effects [10]. One of the edible mushroom *Pholiota adiposa* is classified under the genus *Pholiota* of the family *Strophariaceae*. This mushroom is cultivated in Asia including Korea, Europe, and North America. The pharmaceutical effects of *P. adiposa* have been reported its antihypertension [11], cholesterol-lowering [12], antibiotic, and antitumor activities [11]. This study describes the screening of a potent AChE inhibitor found in *P. adiposa* and the optimization of the extraction conditions to develop a new anti-dementia agent from edible mushrooms for application in the medicinal food industry.

Materials and Methods

Mushrooms and chemicals

Nine kinds of commercial edible mushrooms were purchased at local oriental medicinal markets and agriculture
markets which were cultivated in Korea between 2014~2015. Acetylcholinesterase (AChE from *Electrophorus electricus*), acetylcholine chloride and 5,5'-dithiobis (2-nitrobenzonic acid) were purchased from the Sigma Chemical Co. (St, Louis, MO, USA). A VERSAmax microplate reader (Molecular Devices, Sunnyvale, CA, USA) was used to assay the AChE inhibitory activity.

Water and ethanol extraction

Air-dried (45°C for 48 hr) fruiting bodies were finely pulverized. The sample powders were added to water and 70% ethanol each at a 1:30 w/v ratio and then kept in a shaker for 24 hr at 30°C. Each extract was filtered with Whatman 0.45 µm membrane filter (NO 7404-004; Whatman, Piscataway, NJ, USA) and lyophilized.

Acetylcholinesterase inhibitory activity assay

The AChE inhibitory activity was measured spectrophotometrically as follows [2, 13, 14]. A mixture of 110 µL of assay buffer (0.1 M sodium phosphate, pH 7.3), 30 µL of AChE (0.8 unit/AChE), 30 µL of substrate (2 mM acetylthiocholine chloride), 20 µL of 5,5'-dithiobis (2-nitrobenzonic acid, 2 mM DTNB) and 10 µL of sample (1 mg/mL) dissolved in the assay buffer (1 mg/mL) in a 96 well plate was kept at 37°C for 6 min. The reaction product 5-thio-2-nitrobenzate produced was measured at 415 nm. The inhibition rate was obtained with the following equation:

\[
\text{Inhibition} \% = \left[1 - \frac{(S - S_0)}{(C - C_0)} \right] \times 100,
\]

where C was the radiation of a control (enzyme, assay buffer, DTNB, and substrate) after an activation for 6 min; \(C_0\) was the radiation of the control at time zero; S was the radiation of the tested samples (enzyme, assay buffer, DTNB, and substrate) after an activation of 6 min, and \(S_0\) was the radiation of the tested samples at time zero.

To check the quenching effect of the samples, the sample was added to the reaction mixture C (control), and any reduction in radiation by the sample was investigated.

Results and Discussion

Screening of potent acetylcholinesterase inhibitor-containing mushrooms

To select a potent anti-dementia AChE inhibitor-contai-

Table 1. Yield and acetylcholinesterase inhibitory activity of water and 70% ethanol extracts from various market mushrooms

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Yield (%)</th>
<th>Acetylcholinesterase inhibitory activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water extracts</td>
<td>70% Ethanol extracts</td>
</tr>
<tr>
<td>Sparassiss crispa</td>
<td>3.5</td>
<td>14.4</td>
</tr>
<tr>
<td>Auricularia auricula-judae</td>
<td>1.1</td>
<td>3.0</td>
</tr>
<tr>
<td>Pholiota adiposa</td>
<td>10.5</td>
<td>22.7</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>43.8</td>
<td>21.8</td>
</tr>
<tr>
<td>Lentinula edodes</td>
<td>48.7</td>
<td>37.5</td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>45.2</td>
<td>44.6</td>
</tr>
<tr>
<td>Pleurotus eringi</td>
<td>38.4</td>
<td>36.2</td>
</tr>
<tr>
<td>Flammulina velutipes</td>
<td>35.7</td>
<td>39.3</td>
</tr>
</tbody>
</table>

Extraction condition: 1:30, 30°C, 24 hr.

n.d, not detected.

Table 2. Effect of extraction temperature on the yield of water and 70% ethanol extracts from *Pholiota adiposa*

<table>
<thead>
<tr>
<th>Extraction temperature (°C)</th>
<th>Water extracts (%)</th>
<th>70% Ethanol extracts (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yield AChE inhibitory activity</td>
<td>Yield AChE inhibitory activity</td>
</tr>
<tr>
<td>20</td>
<td>10.3</td>
<td>23.6 (± 0.0)</td>
</tr>
<tr>
<td>30</td>
<td>10.5</td>
<td>23.8 (± 0.0)</td>
</tr>
<tr>
<td>50</td>
<td>11.7</td>
<td>27.4 (± 0.7)</td>
</tr>
<tr>
<td>70</td>
<td>12.7</td>
<td>30.9 (± 0.2)</td>
</tr>
</tbody>
</table>

AChE, acetylcholinesterase.

*Ratio of sample and solvents, 1:30.

*Extraction time 24 hr at 20°C, 30°C and 50°C, 12 hr at 70°C.
ning mushroom, water and 70% ethanol extracts from nine kinds of edible mushrooms were prepared, and their yields and AChE inhibitory activities were determined. As shown in Table 1, the water extract from *Lentinula edodes* fruiting body had the highest yield of 48.7%, and the water and 70% ethanol extracts of *Agaricus bisporus* and the water extract of *Pleurotus ostreatus* also had yields over 40%.

However, the AChE inhibitory activity was the highest at 30.6% for the 70% ethanol extract of *P. adiposa*, and its water extract also had an AChE inhibitory activity of 23.8%. Finally, *P. adiposa* was selected as a good AChE inhibitor-containing edible mushroom. This inhibitory activity was lower than those from plants and fruits such as walnut (72.6%) and job's tears (55.1%) [2, 15, 16].

Optimal conditions for the extraction of the acetylcholinesterase inhibitor

The effects of the extraction temperature on the AChE inhibitory activity and yields from *Pholiota adiposa* fruiting body were determined (Table 2). The 70% ethanol extract had about twice higher yield than that of the water extract.
extract, and their yields were slightly increased as the extraction temperature was increased to 70°C.

The AChE inhibitory activity of the 70% ethanol extract from the extraction at 70°C had the highest activity at 35.0%. The water extract from the extraction at 70°C also had an inhibitory activity of 30.9%. However, water extract from extraction of 100°C for 6 hr showed inhibitory activity less than 10% (data not shown).

The effect of the extraction time on the AChE inhibitory activity and yield was investigated. As seen in Figs. 1 and 2, the yields of the water and 70% ethanol extracts increased when the extraction time was increased to 3 and 6 hr, respectively. The AChE inhibitory activities also increased when the extraction time was increased. The maximum inhibitory activity was 33.7% for the water extract at 3 hr and 35.0% for the 70% ethanol extract at 12 hr.

Lee et al. [2] reported AChE inhibitor of walnut (Juglans regia L.) was maximally obtained from extraction at 40°C for 12 hr by 80% methanol but Seo et al. [13] reported AChE inhibitor of job’s tears (Coix lachrymajobi L.) was maximally extracted at 40°C for 6 hr with 60% methanol.

Meanwhile, the 95% ethanol extract had lower yield and AChE inhibitory activity than that of the 70% ethanol extract (data not shown).

REFERENCES