A Study on the Prediction of Maximum Dry Density and Optimum Moisture Content in Soil Compaction.

Yea-Mook Kang, Seung-Seup Cho and Jae-Young Kim

SUMMARY

In order to obtain the prediction of the maximum dry density and the optimum moisture content of soil without soil moisture test, compaction test results from 157 different places either under construction or already completed were analyzed. The analyzed results were as follow.

The relationship between the maximum dry density and the optimum moisture content of the soil showing a correlation coefficient of 0.96 indicated that there was a high correlation between them. From the above relationship we obtained the equation:

\[\gamma_{e_{\text{max}}} = \frac{1}{0.4193 + 0.00937W_{\text{opt}}} \]

Equation between the optimum moisture content and the maximum wet density of the soil was \[W_{\text{opt}} = \frac{0.4193 \gamma_{e_{\text{max}}}}{0.937 \gamma_{e_{\text{max}}} - 0.01} \] and the values of the optimum moisture content being predicted with the maximum wet density of the soil showed a little difference between those and tested values.

The values of the maximum dry density being predicted with the moisture content estimated by the maximum wet density of the soil were within the range of \(\pm 5\% \) of its tested values.

The relationship between the dry density and the void ratio showed a high correlation between them \((\gamma = 0.9705) \). From the above relationship we obtained the equation:

\[\gamma_{e_{\text{max}}} = \frac{1}{0.3938 + 0.3426 e} \]

* Dept of Agr. Eng., Coll. of Agr., Chungnam Univ.
I. 緒 論

과학의 발전과 인구 증가 및 국명의 소득 증가에 따라 시설
建設事業의 规模도 大型화되며 이를 事業에 使用되
る 材料인 홍, 骨材, 鋼材 및 木材等의 使用比準도
多少變化되어 가고 있다.

그러나 土木工事에서 홍명, 防潮堤, 道路等과 같
은 土木工事의 均等是 相當이 큰 것으로서 이와같
은 大規模의 土木이 있어서 홍의 性質이나 現場條
件等에 의하여 工事費 및 工事費等이 大き게 영향을 받게
된다.

따라서 構造上으로 安全하고 經済的인 工事を 위
해서는 工事着手前에 徹底한 土質調査를 實施하고
充分한 試験을 하므로서 홍의 性質 자연적 性質을 得
하여構造物의 利用目的에 맞도록 材料를 選定하
고 또 그의 力學的 性質은 人为의으로 改善하여 工
事材料로 使用하여야 한다.

홍의 透水性, 壓縮性, 斷面強度等은 홍의 密度와
含水比에 따라서 变化한다. 即, 같은 試料라고 할지
라도 密度가 不等 노 力學的 性質이 改善하여 安定度
가 높게 되므로 홍은 工事材料로 使用할 때에는 密度를
높이기 爲하여 適合이 홍 選擇을 實施 하여야 한다.

盛土作業의 成果를 左右하게하는 토질試験은 細密
的 試料가 必要하고 即 場際에서 努力이 많고 所要의
므로 토질 試験을 하지 않고 홍의 性質로 得る 그의 最大乾燥密度와 最適含水比를 推定하는 方策에
對하여 前述의 研究結果가 發表되었다.

이를 研究結果는 大部分이 液性限界, 乾燥指数, 自
然含水比 및 粒度試験에서 推定하는 該係數로부터 最
適含水比를 推定하고 最大乾燥密度와 最適含水比의
關係에 最大乾燥密度를 推定하고 있다.

即, 野(野)は 最大乾燥密度와 最適含水比는 直線的
인 關係が 成立한다고 하였고, 李(李), 姜(姜), 森(森),
及び 酒井(酒井)等は 最大乾燥密度와 最適含水比는 直線的
関係が 成立することに して 最適含水比와 最大乾燥密度
を 推定하였다.

最適含水比의 推定方法으로서는 Jumikis(2)는 液性限界와 乾燥指數로부터 最適含水比を 推定する 圖
表を 提案され野(野)は 粘土含有量로부터 最適含水
比を 推定する 圖表式を 発表している。

姜(姜)は Classification Area와 均等係数로 부터
推定하였고 李(李)は 自然 程度의 含水比, 又 Ring(2)
は 粒度試験에서 推定するのは Finessness Average와 塑
性限界로부터 最適含水比を 推定하였다.

그에 AASHO에서는 塑性限界, 乾燥指數, 液性
限界, Finessness Average와 Colloid 含有量을 使用
하여 最大乾燥密度와 最適含水比의 推定法에 関한
実験式과 圖表를 發表하고 있다.

그러나 봉(봉)推定公式은 土壇의 物理的 性質
試験을 한 뒤에 既定의 推定이 可能하도록 되었다.

本 研究에서는 全國에서 最近에 工事を 実施하였
거나 또는 工事中에 있는 157個 地區의 나침 試験結
果을 分析하여 試験結果에서 推定하는 最大乾燥密
度를 가지는 時間이 많지 않으며 所要的 含水比試験을
行せず 直接 最適含水比를 推定하고 最大乾燥密
度を 求める 關係式와 圖表を 提出するために 短時間
内に 最適含水比와 最大乾燥密度の 概略値を 算出하
는 方法을 提案하고자 한다.

<table>
<thead>
<tr>
<th>Region</th>
<th>CL</th>
<th>CH</th>
<th>ML</th>
<th>CL-ML</th>
<th>SM</th>
<th>MH</th>
<th>SC</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyong gi</td>
<td>13</td>
<td>4</td>
<td>13</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Chung bug</td>
<td>9</td>
<td>3</td>
<td>9</td>
<td></td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Chung nam</td>
<td>24</td>
<td>8</td>
<td>1</td>
<td></td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Jeon bug</td>
<td>7</td>
<td>1</td>
<td>7</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Jeon nam</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Gyong bug</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Gyong nam</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Je ju</td>
<td>76</td>
<td>18</td>
<td>25</td>
<td>2</td>
<td>25</td>
<td>8</td>
<td>3</td>
<td>157</td>
</tr>
</tbody>
</table>

一 208 一
II. 材料 및 方法

試料는 表-1과 같이 純一成分法에서 CL 76%, CH 18%, ML 25%, SM 25%, MH 8%, SL 3%, CL-ML2種, 合計157種類의 試料에 對하여 標準添加試験
を行 結果를 分析 하였다.

III. 結果 및 考察

1. 最大乾燥密度와 最適含水比의 推定

(1) 最大乾燥密度와 最適含水比의 關係

一般的으로 細粒土로서 最大乾燥密度는 작고 最適

II. 材料 및 方法

試料는 表-1과 같이 純一成分法에서 CL 76%, CH 18%, ML 25%, SM 25%, MH 8%, SL 3%, CL-ML2種, 合計157種類의 試料에 對하여 標準添加試験
を行 結果를 分析 하였다.

III. 結果 및 考察

1. 最大乾燥密度와 最適含水比의 推定

(1) 最大乾燥密度와 最適含水比의 關係

一般的으로 細粒土로서 最大乾燥密度는 작고 最適

Fig. 1. Relationship between maximum dry
density (1/\(\gamma_{\text{dmax}} \)) and optimum moisture
content (\(W_{\text{opt}} \)).

(2)式은 飽和度一定曲線을 나타내는 (3)式과 類似한 關係를 가지고 있으므로 最大乾燥密度와 最適含水比는 그림-2와 같은 直線關係가 있음을 알 수 있다.

\[\gamma_d = \frac{1}{G + \frac{W}{S}} \times \gamma_w \cdots \cdots \cdots \cdots (3) \]

(2)와 (3)式을 比較하여 \(\frac{1}{G} = 0.4193 \),

\[\frac{1}{S} = 0.00 \]

이 될 수 있다. Youssef(22)는 粒度曲線에서係數 \(C_2 \)를 求하여 最大乾燥密度를 推定하는 式을 다

含水比는 큰 값을 나타내고 있으며 粗粒土에서는 이

와 反対으로 最大乾燥密度는 큰 값을 나타내며 最適含水比는 작은 값을 나타낸다. (2)

따라서 最適含水比가 작은 薄片 수록 最大乾燥密度
是 큰 값을 나타내는 直線關係가 成立하다. (1,11,12,13,13,13,13)

試験結果에서 얻어지는 最大乾燥密度
(\(\gamma_{\text{dmax}} \))와 最適含水比(\(W_{\text{opt}} \))의 關係를 分析하기
為하여 \(1/\gamma_{\text{dmax}} \)와 \(W_{\text{opt}} \)의 關係를 圖示한 結果

을 그림-1과 같은 (1)式과 같은 直線關係를 求했으

と 그 오차의 範圍는 大略 ±5% 以内에 수했다.

\[\frac{1}{\gamma_{\text{dmax}}} = 0.4193 + 0.00937 \times W_{\text{opt}}, \cdots \cdots (1) \]

(1)式에서 \(\gamma_{\text{dmax}} = \frac{1}{0.4193 + 0.00937 \times W_{\text{opt}}} \cdots \cdots (2) \)

Fig. 2. Relationship between maximum dry
density (\(\gamma_{\text{dmax}} \)) and optimum moisture
content (\(W_{\text{opt}} \)).

은과 같이 提案하고 있다.

\[\gamma_{\text{dmax}} = \frac{G}{1 + C_2 \times G \times W} \cdots \cdots \cdots \cdots (4) \]

(4)와 (3)式을 比較하여 \(\frac{1}{S} \)이 (4)式의 \(C_2 \)에 해당

함을 알 수 있다.

따라서 最適含水比를 알았으면 (2)式에 依하여

最大乾燥密度를 推定하여도 그의 誤差는 ±5%에 수

함을 알 수 있다.

(2) 最適含水比와 最大乾燥密度와의 關係

= 209 =
Fig. 3. Relationship between max. wet density and max. dry density.

Fig. 4. Relationship between clay content and optimum moisture content.

Fig. 5. Relationship between predicted values and tested values of optimum moisture content.

Fig. 6. Relationship between predicted and tested values of maximum dry density.
最大乾燥密度와 최適含水比의 추정에 대하여

비교조의 허름과 모래의 최適含水比를 변화시킬 때, 乾燥密度와 허름의
曲線은 모래의 최適含水비의 밸레이에 의해서 나타나는
曲선과 모래의 乾燥密度와 허름의 최適含水비의
曲선은 완벽한曲선으로 나타난다.

![Fig. 7. Relationship between $\gamma_{d,\text{max}}$ vs W_{opt} and $\gamma_{d,\text{max}}$ vs V_s.](image)

![Fig. 8. Relationship between V_s and V_w.](image)

最大乾燥密度와 최適含水比의 관계는 (5)식과 같이

$$\gamma_{d,\text{max}} = \frac{100}{100 + \omega_{\text{opt}}} \gamma_s$$ \hspace{1cm} (5)식

(2)식과 (5)식에서 최適乾燥密度 ($\gamma_{d,\text{max}}$)를
消去하여 (6)식을 얻는다.

$$W_{\text{opt}} = \frac{1 - 0.4193 \gamma_s}{0.0093 \gamma_s - 0.01}$$ \hspace{1cm} (6)식

그림-3에서 보는 바와 같이 최適含水比와 최適乾燥密度의
関係식 (γ_s)는 최適乾燥密度 ($\gamma_{d,\text{max}}$)보다는
약간 작은 값을 나타내고 있으나 그의 차는 아주 작을
것으로 γ_s의 대신에 $\gamma_{d,\text{max}}$를 대입하여도 (6)식
에서 계산한 최適含水비의 결과는 그림-5에서와 같이
±20%의 오차를 나타내고 있음을 알 수 있다.

이에 더하여 그림-7은 다음의 값을 필요로 할때의
曲线에서 얻어지는 설정값을 사용하여 $\gamma_{d,\text{max}}$, W_{opt}, γ_s로
修正하여 (6)식에 대입하면 정확한 값을 용이히 사용할 수 있는 것으로
생각된다.

最大乾燥密度를 사용하여 (6)식을 사용하여 최適含水비의
값을 계산하여 최適乾燥密度를 계산한 값과 양단간의
差이 5% 이내의 오차를 나타내고 있음을 알 수 있다.

大半의 응답에 보이는 최適乾燥密度의 95% 이상으로 다치도록
가하여 1과 2,3의 결과를 비교하여 계산한
最大乾燥密度는 그의 결과가 다양한 실험에서
개발된 관계에 속해 있다.

그림-7은 다음의 값을 필요로 할때의
曲선에서 얻어지는 설정값을 사용하여 $\gamma_{d,\text{max}}$, W_{opt}, γ_s로
修正하여 (6)식에 대입하면 정확한 값을 용이히 사용할 수 있는 것으로
생각된다.
2. 最大乾燥密度와 空隙比와의 関係

根據黑田(3)、松尾(11)等之 空隙比와 透水係数에 對하여 研究하고 關係式을 發表 하므로서 動態的의 透水係数를 算出하는데 使用되고 있다。

이와같이 透水係数에 關係되는 空隙比는 様을 다

Fig 9. Relationship between maximum dry density and void ratio.

最大乾燥密度와 空隙比의 關係式을 図示 し

$$\gamma_d = \frac{1}{0.3938 + 0.3426e}$$

$$\gamma_{dmax} = \frac{1}{0.4193 + 0.00937 W_{opt}}$$

最大乾燥密度와 空隙比의 關係式을 变形

最大乾燥密度와 空隙比의 關係式을 變形。

最大乾燥密度와 空隙比의 關係式을 变形。

最大乾燥密度와 空隙比의 關係式을 變形。

IV. 摘 要

最大透水係数라 含水比試験을 하지 않고 直接最

適合水比와 最大乾燥密度를 推定하는 關係式を 求す

為하여 調査 및 最近에 工事물 공학에よう 본

工事물에 있는 157個 地區의 나침 計測 結果を 分

析하여 次のように 關係式を 設計

最大乾燥密度와 最適含水比의 사이에는 \(\gamma = 0.9636 \)

의 側面 相互性를 나타내고

$$\gamma_{dmax} = \frac{1}{0.4193 + 0.00937 W_{opt}}$$

의 關係式を 設計

最適含水比에 對應하는 湿潤密度와 最適含水比는

$$W_{opt} = \frac{1 - 0.4193 \gamma_{max}}{0.9377}$$

の 關係式を 設計。 最大

濕潤密度(\(\gamma_{max} \))로 推定한 最適含水比는 實測值와

差異가 없었다。

最大濕潤密度로 推定한 含水比에 의하여 最大乾燥

密度를 推定한 結果實測值와의 差異는 ±5%내에 속

した。

最大乾燥密度와 空隙比는 \(\gamma = 0.9706 \)의 側面 相互
参考文献

(2) 永倉達，林田時，1968，土の最大乾燥密度と最適含水比の関係，高圧道路建設技術研究所報告，韓国総合技術公社．
(5) 姜昊絁，1970，土の圧密による関係研究(3)，雑誌土木学会 12(2):5.
(7) 河上信義，1954，アースダム(土質工学的設計と施工)，29，鹿島建設技術研究所出版部．
(8) 黒田時彦，高田和彦，1969，振動をうける飽和砂の透水性(その1)，土と基礎，17(8):23.
(9) 金城信，尹忠範，1975，土工学的性質に関する研究，雑誌土木学会，17(3):21.
(11) 松尾新一郎，木暮政司，1969，細粒土の透水性に与える影響，第4回土質工学研究発表会，昭和44年度発表講演集；9.
(12) 三島史郎，黒木達平，1968，関東ロームの地質工学的研究，第3回土質工学研究発表会，昭和44年度発表講演集；17.
(14) 森浦雄，1962，土の最大乾燥密度と最適含水比について，土と基礎，10(9):12.
(16) 李正典，1974，土の最大乾燥密度及最適含水比の相関性について，雑誌土木学会 16(2):74.
(17) 李正典，1968，最大乾燥密度及最適含水比の相関性について，大韓土木学会誌 16(2):74.