A study on eccentric load acted on cut and cover tunnel by numerical approach

Bae, Gyu Jin · Chung, Hyung Sik · Lee, Gyu Phil

Abstract

For environment-friendly construction, cut-and-cover tunnels have been constructed, thereby leading to embankment slopes with a number of steps. The slopes cause eccentric load on concrete lining of the tunnel. Nevertheless, uniform vertical and horizontal earth pressures, which are determined by considering a self-weight of embankment and K_0, are routinely used in structural calculation. Distribution of the earth pressures applied to the lining will lead to a biased calculation far from the actual behavior of the lining. In this study, basic study, therefore, was performed to consider the eccentric load properly in design and analysis of a cut-and-cover tunnel. A method capable of considering the eccentric load in design was proposed and its applicability was numerically examined through a number of examples.

Keywords: Cut-and-cover tunnel, eccentric load, numerical analysis, interface element

요 지

복개 터널구조물은 환경공학 건설을 위하여 석호체는 일정 구배를 갖는 경사지물을 하계하고, 이로 인하여 복개 터널구조물에는 편도압이 작용하게 된다. 현재 복개 터널구조물의 설계를 위하여 일반적으로 적용되고 있는 구조공학적 해석식 연직토압은 콘크리트 라이닝 상부 석호체를 상체하중으로 고려하여 산정하고, 좌·우측에 작용하는 횡방향 토압은 경지토압 분포를 적용하고 있다. 그러나 이러한 토압분포는 콘크리트 라이닝 좌·우측 측벽부 외측에서 석호체의 경사지물에 의한 편도압의 영향을 고려할 수 없다. 따라서, 본 연구에서는 석호사이면에 의한 편도압을 고려한 합리적인 복개 터널구조물 해석 및 설계를 위한 기본연구와, 지반공학적 모델링 기법을 이용하여 석호사이면에 의한 편도압 고려 방안을 제안하였으며, 구조공학적 해석기법을 통하여 제안된 편도압 고려 방안의 적용성을 검토하였다.

주요어: 복개터널구조물, 편도압, 수치해석, 경계요소
1. 서론

지반공작 후 콘크리트 타설 및 원지반 형태로 되매음을 실시하는 복개 터널구조물의 콘크리트 라이닝은 상재하중, 토압, 수압, 자중, 터널 내부의 건축하중, 운도변화 및 진조수축, 지진하중 등과 같은 다양한 현장 조건 등을 고려하여 해석 및 설계를 수행하고 있다. 상기와 같은 고려사항 가운데 복개 터널구조물에 작용하는 토압은 콘크리트 라이닝 완공 후 성토체를 하중으로 가정하여 해석을 실시하는 구조공학적 모델링 기법이 널리 적용되고 있다. 그러나 이러한 구조공학적 모델링 기법은 복개 터널구조물에 인지하여 시공되는 굴착사면의 경사, 콘크리트 라이닝과 굴착사면의 이격거리 및 천단부 토퍼리와 같은 지형적인 인자와 soil arching, 콘크리트 라이닝과 성토체 접촉면의 경계요소 (interface element) 등과 같은 지반공학적 측면의 영향요인을 고려하기에 많은 어려움이 있다 (배규진, 2001).

복개 터널구조물 상부에 작용하는 연직토압은 박스구조물과 되매음을 지반의 상대변위를 고려한 Marston-Spanglier 이론 및 수중강을 적용함으로써 구할 수 있으며 (이상덕, 2000), Kellogg (1993)는 되매음을 지반 내부에 압축효과를 고려함으로써 지하에 매설된 구조물에 작용하는 연직토압을 계산하였으며, 정성교 (1993) 등은 사실로 토압 이론을 수정하여 되매음을 굴착형상에 따른 수평토압의 산정식을 유도하였다. 그러나 이러한 연

도는 재현된 경계조건하에서 수행된 연구로서, 친환경적 건설을 위하여 성토체 시공시 지반공작 이전의 원지반 조건으로 복원을 위하여 성토체를 일정구배를 갖는 경사 시공을 하게하며, 이로 인하여 복개 터널구조물에 작용하는 편토압 영향을 고려하기에 어려움이 있다.

따라서, 본 연구에서는 성토사면 경사공에 의하여 작용하는 편토압을 고려하여 합리적인 복개 터널구조물 해석 및 설계를 위한 기본연구로서, 지반공학적 모델링 기법을 이용하여 성토체 경사공에 의하여 복개 터널구조물에 작용하는 편토압 고려 방안을 제안하였으며, 구조공학적 해석기법을 통하여 제안된 편토압 고려방안의 적용성 분석을 수행하였다.

2. 수치해석 조건 및 입력 parameters

2.1 수치해석 조건

본 연구에서는 굴착사면의 구배, 굴착사면과 콘크리트 라이닝 측벽부와의 이격거리, 원지반 조건, 콘크리트 라이닝 천단부 토퍼리 및 성토사면의 설치위치 등의 현장조건 등을 고려하기 위하여, 그림 1에서 보이는 바와 같이 굴착사면 원지반이 증화압, 연압 중앙 조건에 대하여 구배는 각각 1:0.5, 1:0.8, 1:1.0으로 가정하였으며, 성토사면 구배는 30°, 복개 터널구조물 측벽부 하부

![그림 1. 편토압 영향분석을 위한 해석조건](image)
와 굴착사면과의 이격거리 1, 2, 3m, 토파고 0.5D, 1.0D, 1.5D (D:등고환경 직경), 성토사면의 설치위치, 콘크리트 라이닝 전단부로부터 ¼B (B:터널 폭)의 이격 조건 변화에 대하여 수치해석을 수행하였다. 또한 수치
해석 단면은 2차원 도로터널을 기본 단면으로 선정하였으며, 콘크리트 라이닝 은 beam 요소, 지반요소는 2차원
평면변형요 (plane strain element)로 모델링 하였다.
복개 터널구조물 시공시 단계 성투과정을 모사하였으며, 성토체의 토압작용 메커니즘을 보다 정확하게 규명하기
위하여, 이질적인 매체가 접하는 콘크리트 라이닝과 성
토체의 접촉면에 경계요소를 모델링 하여 경계면에서 발
생하는 마찰력을 고려하였다.
경계요소는 그림 2에서 보이는 바와 같이 수치해석시 경계요소를 경계로 연결되어 있는 각 요소 (elements)
를 전단강성과 연속강성을 갖는 스프링으로 모델링 하는
방법과 흔한 강도정수 (c, φ)에 감소계수 (R)를 이용하
여 경계요소를 모델링 하는 방법이 등이 일반적으로 적
용되고 있으며 (식 1~2 참조), 이 가운데 본 연구에서는
강도정수에 감소계수를 적용하여 경계요소를 모사하는
기법을 적용하였다. 경계요소의 모델링을 위한 감소계수
(R)는 표 1에서 보이는 바와 같이 지반의 종류 및 흔과
접하게 되는 대상 구조물의 재질에 따라 그 값이 변화하

\[c_{\text{interface element}} = R \cdot c_{\text{soil}} \]
\[\tan \phi_{\text{interface element}} = R \cdot \tan \phi_{\text{soil}} \]

이러서,
- \(c_{\text{interface element}} \): 경계요소의 점착력
- \(c_{\text{soil}} \): 경계요소와 접하는 흔의 점착력
- \(\phi_{\text{interface element}} \): 경계요소의 내부마찰각
- \(\phi_{\text{soil}} \): 경계요소와 접하는 흔의 내부마찰각
- \(R \): 감소계수

2.2 수치해석을 위한 지반정수

복개 터널구조물 설계를 위한 원지반의 지반정수는 현
장 및 실험실 실험을 통하여 합리적인 값을 산정하여야
하며, 이러한 지반정수는 현장의 지질공학적 특성에 따
라 많은 범위에 분포하게 된다. 따라서 본 연구에서는
수치해석을 위한 기본 입력물성치 산정을 위하여 1998
년 한국건설기술연구원에서 수행한 "국내 터널설계 기술
력 향상에 관한 신기술 연구(1)"의 조사결과를 토대로

![그림 2. 전단 및 연직 강성스프링으로 연결된 경계요소 개념도](image)

표 1. 경계요소 고려를 위한 감소계수

<table>
<thead>
<tr>
<th>지반의 종류</th>
<th>대상 구조물의 재질</th>
<th>R</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>sand</td>
<td>steel</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td>0.8~1.0</td>
<td></td>
</tr>
<tr>
<td>clay</td>
<td>steel</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>concrete</td>
<td>0.7~1.0</td>
<td></td>
</tr>
</tbody>
</table>

Tunnelling Technology, Vol.5, No.3, September 2003 229
3. 수지해석 결과분석

3.1 복개 터널구조물에 적용하는 연직토압

수지해석결과 성토사면 설치 전 단계인 수평성토 완료 시 복개 터널구조물을 적용하는 연직토압은 그림 3에서 보이는 바와 같이 천단부를 기준으로 좌, 우 대칭적으로 분포하며, 콘크리트 라이닝 천단부 토피고가 증가함에 따라 증가하는 것으로 나타났다. 분포형상은 좌, 우측 폭부 부분은 천단부에 비해 감소하는 동분포 하중형상 을 보이며, 굴착사면의 구배변화에 따른 영향은 미미한 것으로 나타났다. 이러한 대칭성 동분포 연직토압 분포는 성토사면의 설치위치가 콘크리트 라이닝 천단부에서 원거리에 설치되는 경우 성토사면을 구성하는 성토망과 성토체에 의한 영향이 상대적으로 감소하므로 크게 변화하지 않으나, 성토사면의 설치위치가 천단부 근접함에 따라 토피압 영향으로 인하여 성토사면측의 연직토압이 증가하는 것으로 나타났다 (그림 4 참조).

그림 4에서 보이는 바와 같이 복개 터널구조물의 설계 및 해석성토사면에 의한 토피압은 수평성토 완료 단계에서 작용하는 대칭형 토피압분포 조건에 성토사면 형성에 의한 토피압이 추가적으로 작용하도록 모델링 하는

표 2. 수지해석을 위한 지반정수

<table>
<thead>
<tr>
<th></th>
<th>단위증강 (kN/m²)</th>
<th>단상계수 (kN/m²)</th>
<th>C (kN/m²)</th>
<th>φ</th>
<th>μ</th>
<th>K₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>성토체</td>
<td>19</td>
<td>3.5 × 10^6</td>
<td>10</td>
<td>30</td>
<td>0.35</td>
<td>1 - sin φ</td>
</tr>
<tr>
<td>홍화암</td>
<td>23</td>
<td>3.9 × 10^6</td>
<td>184</td>
<td>33</td>
<td>0.30</td>
<td>1.0</td>
</tr>
<tr>
<td>연암</td>
<td>25</td>
<td>2.1 × 10^6</td>
<td>930</td>
<td>37</td>
<td>0.27</td>
<td>1.0</td>
</tr>
<tr>
<td>경암</td>
<td>27</td>
<td>1.9 × 10^6</td>
<td>1400</td>
<td>43</td>
<td>0.23</td>
<td>1.0</td>
</tr>
</tbody>
</table>

그림 3. 콘크리트 라이닝에 적용하는 연직토압 (굴착사면 구배=1:0.8, 성토사면 설치 전 단계)
표 3. 성토사면 설치위치 변화에 따른 편토압 증가 (연직토압)
(단위: kN/m)

<table>
<thead>
<tr>
<th>토피고</th>
<th>굴착구배</th>
<th>성토사면 설치위치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>천단부</td>
</tr>
<tr>
<td></td>
<td>증가량</td>
<td>증가율 (%)</td>
</tr>
<tr>
<td>0.5D</td>
<td>1vs0.5</td>
<td>47.04</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>64.95</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>77.60</td>
</tr>
<tr>
<td>1.0D</td>
<td>1vs0.5</td>
<td>58.87</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>90.64</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>106.89</td>
</tr>
<tr>
<td>1.5D</td>
<td>1vs0.5</td>
<td>74.77</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>115.27</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>135.75</td>
</tr>
</tbody>
</table>

것으로 편토압의 영향을 고려할 수 있을 것으로 판단되며, 성토사면 설치위치 변화에 따른 편토압 증가량을 천단부 토피고 변화관계로 정리하면 표 3과 같다. 표 3에서 보이는 바와 같이 콘크리트 라이닝 천단부 토피고와 성토사면의 설치위치가 동일한 경우 굴착구배의 구배가 완만해질수록 토 피고의 영향이 증가하는 것으로 나타났으며, 또한 굴착구배 구배 및 성토사면 설치위치 조건이 동일한 경우 토피고가 증가함수록 토 피고의 영향이 증가하는 것으로 나타났다. 이기적리가 2m인 경우 성토 사면 성토량과 편토압의 상관계계 (R²)는 0.99 이상으로 높은 상관성이 있는 것으로 나타났으며, 토피고와 굴착 사면 구배변화에 큰 영향을 받지 않는 것으로 나타났다. 따라서, 성토사면 성토체의 성토량이 복개 터널구조물에 작용하는 편토압의 발생에 가장 큰 영향인사라고 판단되며, 성토사면 성토량과 복개 터널구조물에 작용하는 연 직토압의 변화관계를 정리하면 그림 5와 같다.

3.2 복개 터널구조물에 작용하는 수평토압

복개 터널구조물의 설계에 일반적으로 작용하고 있는 구조공학적 해석석 콘크리트 라이닝에 작용하는 수평토 압은 정직토압 조건을 작용하고 있으나, 이러한 토압분

Tunnelling Technology, Vol.5, No.3, September 2003 231
포는 복개 터널구조물에 인접한 굴착시면 등과 같은 현장조건을 합리적으로 고려할 수 없는 문제점을 내포하고 있다. 따라서 본 연구에서는 수치해석을 통하여 복개 터널구조물에 작용하는 수평토압 분포 및 성토사면에 의한 편토압 작용시 수평토압의 변화관계를 분석하였다. 수치
해석결과 성토사면 설치 전 단계인 수평토압 완료시 복개
터널구조물의 좌·우측에 작용하는 수평토압은 그림 6~7에서 보이는 바와 같이 동일한 토피고 조건에서 굴착시
구배가 완만해짐에 따라 성토량이 증가하더라도 분포형상 및 크기의 변화가 미미한 것으로 나타났으며,
굴착시면 구배가 동일한 경우 토피고가 증가함에 따라 수평토압은 증가하는 것으로 나타났다. 토피고 증가에
의한 수평토압은 콘크리트 라이닝 하부에서 보다 친단부
및 어깨부에서 크게 증가하며, 성토사면의 영향으로 콘
크리트 라이닝 좌측부에 작용하는 토압은 수평토압 완료
시 보다 최대 약 43% 정도 증가하고, 우측부에 작용하는
토압은 수평토압 완료시 보다 최대 약 110% 정도 증가하
는 것으로 나타났다.
그림 6 및 7에서 보이는 바와 같이 복개 터널구조물
의 설계 및 해석시 성토사면에 의한 환경적 편토압은 연직
토압과 동일하게 수평토압 완료 단계에서 작용하는 대칭
형 토압분포 조건에 성토사면 형성에 의한 편토압이 추
가적으로 작용하도록 모델링 하는 것으로 편토압의 영향
을 고려할 수 있을 것으로 판단되며, 성토사면 설치위치
변화에 따른 편토압 증가량을 전단부 토피고 변화관계로
처리하면 표 4~5 와 같다.
콘크리트 라이닝 친단부 토피고와 성토사면의 설치위
치가 동일한 경우 굴착시면의 구배가 완만해짐에 따라
편토압의 영향이 증가하는 것으로 나타났다. 이는 성토
사면의 구배는 일정하나 굴착시면의 구배가 완만해짐에
따라 성토사면을 구성하는 성토량이 증가에 기인한 것으
로 판단되며, 성토사면 성토량과 편토압의 상관관계
(R²)는 0.99 이상으로 높은 상관성이 있는 것으로 나타났
다. 따라서, 성토사면 성토체의 성토량이 복개 터널구조
물에 작용하는 편토압의 발생에 가장 큰 영향인차라고
판단되며, 성토사면 성토량과 복개 터널구조물에 작용하
는 수평토압의 변화관계를 정리하면 그림 8~9와 같다.

그림 5. 성토사면 성토량 변화에 따른 연직토압 증가

그림 6. 굴착시면 구배 변화에 따른 수평토압 분포 변화 (토피고 1.0D)

그림 7. 토피고 변화에 따른 수평토압 분포 변화 (굴착시면 구배 1:0.5)
표 4. 선타면 설치위치 변화에 따른 콘크리트 라이닝 좌축부 수평토압 증가

(단위: kN/m)

<table>
<thead>
<tr>
<th>토피고</th>
<th>굴착 사면 구배</th>
<th>성토사면 설치위치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>천단부</td>
<td>0.25B이격</td>
</tr>
<tr>
<td></td>
<td>증가량</td>
<td>증가율 (%)</td>
</tr>
<tr>
<td>0.5D</td>
<td>1vs0.5</td>
<td>22.47</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>30.71</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>30.38</td>
</tr>
<tr>
<td>1.0D</td>
<td>1vs0.5</td>
<td>23.85</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>30.22</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>30.22</td>
</tr>
<tr>
<td>1.5D</td>
<td>1vs0.5</td>
<td>30.64</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>46.63</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>46.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>토피고</th>
<th>굴착 사면 구배</th>
<th>성토사면 설치위치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,5B이격</td>
<td>1,75B이격</td>
</tr>
<tr>
<td></td>
<td>증가량</td>
<td>증가율 (%)</td>
</tr>
<tr>
<td>0.5D</td>
<td>1vs0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>0.15</td>
</tr>
<tr>
<td>1.0D</td>
<td>1vs0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>1.39</td>
</tr>
<tr>
<td>1.5D</td>
<td>1vs0.5</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>3.09</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>4.39</td>
</tr>
</tbody>
</table>

3.3 콘크리트 라이닝에 작용하는 편토압 고려 방안

본 연구에서는 편토압을 효과적으로 고려하기 위한 연적 및 수평토압분포를 계산하기 위하여, 우선 수지해석 결과 각 해석조건별로 성토사면이 시공되지 않은 수평성토 완료 단계에서의 연적 및 콘크리트 라이닝 좌우측에 작용하는 수평토압분포 면적을 계산하였다. 토압분포 면적은 콘크리트 라이닝에 작용하는 잔여중량의 동일한 단위계를 갖으며, 이러한 토압분포 면적을 콘크리트 라이닝의 폭과 높이에 근일하게 작용하는 등분포 하중으로 환산하여, 콘크리트 라이닝에 작용하는 토압분포를 계산하였다. 또한 성토사면 시공에 의한 편토압은 상기에서 제안된 등분포 하중에 성토사면에 의해 발생하는 하중을 성토사면의 성토량 변화에 따라 연적 및 수평토압의 증가분을 추가하는 방안을 제안하였다. 성토사면에 의한 편토압을 고려하기 위한 추가중량은 연직토압은 삼각형의 변등분포 하중으로 제안하였으며, 콘크리트 라이닝 좌우측에 작용하는 수평토압은 사각형의 등분포 하중으로 제안하였다 (그림 10 참조).
표 5. 설폿사면 설치위치 변화에 따른 콘크리트 라이닝 우축부 수평토압 증가
(단위: kN/m)

<table>
<thead>
<tr>
<th>토피고</th>
<th>굴착</th>
<th>설폿사면 설치위치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>사면구배</td>
<td>천단부</td>
</tr>
<tr>
<td></td>
<td></td>
<td>증가량 (%)</td>
</tr>
<tr>
<td>0.5D</td>
<td>1vs0.5</td>
<td>27.50</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>53.96</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>78.38</td>
</tr>
<tr>
<td>1.0D</td>
<td>1vs0.5</td>
<td>25.13</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>53.88</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>75.19</td>
</tr>
<tr>
<td>1.5D</td>
<td>1vs0.5</td>
<td>23.26</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>55.98</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>98.90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>토피고</th>
<th>굴착</th>
<th>설폿사면 설치위치</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>사면구배</td>
<td>1,5B이격</td>
</tr>
<tr>
<td></td>
<td></td>
<td>증가량 (%)</td>
</tr>
<tr>
<td>0.5D</td>
<td>1vs0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>0.81</td>
</tr>
<tr>
<td>1.0D</td>
<td>1vs0.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>5.78</td>
</tr>
<tr>
<td>1.5D</td>
<td>1vs0.5</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>1vs0.8</td>
<td>3.47</td>
</tr>
<tr>
<td></td>
<td>1vs1.0</td>
<td>12.15</td>
</tr>
</tbody>
</table>

그림 8. 설폿사면 성도형과 좌측부 수평토압 변화 관계

그림 9. 설폿사면 성도형과 우측부 수평토압 변화 관계
3.4 편토압 고려를 위한 제안 토압분포의 적응성 검토

본 연구에서는 복개 터널구조물에 적용하는 편토압을 고려하기 위하여 성토사면 조건, 토피고 및 굴착사면 구배 등과 같은 현장조건 변화를 고려한 토압분포를 제안하였으며, 제안된 토압분포의 적응성 등을 분석하기 위하여 기존 이론 토압분포와 본 연구에서 제안한 토압분포를 이용하여 구조공학적 해석을 수행하였으며, 이를 지반공학적 해석결과와 비교・검토하였다. 해석조건은 콘크리트 라이닝 천단부 토피고 1.0D, 굴착사면 구배 1:1.0, 이격거리 2m, 성토사면 설치위치는 천단부, 천단부 ⅓B 이격지점 및 ⅔B 이격지점 3가지 경우에 대하여 수치해석을 수행하였다 (그림 11 참조).

복개 터널구조물에 적용하는 편토압을 고려하기 위하여 제안된 토압분포의 적응성 검토를 위한 해석결과를 각 해석조건 별로 콘크리트 라이닝의 천단부 및 좌・우 측 측벽부에서 발생하는 힘모멘트, 전단력 및 축력 등과 같은 부재력 및 연직, 수평변위를 비교・점리하면 표 6과 같다.

본 연구에서 제안한 토압분포를 이용하여 구조공학적 해석을 수행한 결과 지반공학적 해석결과와 유사한 콘크리트 라이닝의 변위와 부재력이 발생하는 것으로 나타났다. 이 가운데 콘크리트 라이닝의 근근배근 등과 같은 단면설계에 주요 고려사항인 힘모멘트 및 연직변위는 해석조건에 따라 다소 차이가 있으나 지반공학적 해석결과

![그림 10. 편토압 고리를 위한 토압분포 제안](image)

![그림 11. 제안된 토압분포 적응성 검토를 위한 해석단면 조건](image)
와 비교하면 각각 약 6%, 4% 이내의 오차를 갖으며, 이 론 토압분포에 의한 구조공학적 해석결과는 지반공학적 해석결과와 비교하면 휘모멘트의 경우 최대 약 63%, 연 직변위 약 57%의 오차가 발생하는 것으로 나타났다. 또 한 각각의 해석결과를 콘크리트 라이닝에 발생하는 휘모 멘트를 도대로 강도설계법을 이용한 콘크리트 라이닝의

표 6. 제안된 토압분포 적용성 검토를 위한 해석결과 비교 검토

<table>
<thead>
<tr>
<th>성도사면 설치 위치</th>
<th>지점</th>
<th>수평변위 (mm)</th>
<th>연직변위 (mm)</th>
<th>최대 휘모멘트 (kN·m)</th>
<th>최대 전단력 (kN)</th>
<th>최대 측력 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>천단부</td>
<td>최측 측벽부</td>
<td>-5,686</td>
<td>-0,329</td>
<td>370,29</td>
<td>651,35</td>
<td>2302,94</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-8,140</td>
<td>-5,153</td>
<td>751,72</td>
<td>453,28</td>
<td>1450,19</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-1,679</td>
<td>-0,347</td>
<td>595,50</td>
<td>109,05</td>
<td>2367,02</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-4,384</td>
<td>-0,303</td>
<td>332,40</td>
<td>539,27</td>
<td>2108,29</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-5,883</td>
<td>-4,534</td>
<td>649,04</td>
<td>355,62</td>
<td>1334,59</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,917</td>
<td>-0,317</td>
<td>503,39</td>
<td>143,84</td>
<td>2165,50</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-3,289</td>
<td>-0,284</td>
<td>317,50</td>
<td>447,88</td>
<td>1969,36</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-3,840</td>
<td>-4,144</td>
<td>590,94</td>
<td>264,77</td>
<td>1241,50</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,158</td>
<td>-0,294</td>
<td>43420</td>
<td>184,11</td>
<td>2008,98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>성도사면 설치 위치</th>
<th>지점</th>
<th>수평변위 (mm)</th>
<th>연직변위 (mm)</th>
<th>최대 휘모멘트 (kN·m)</th>
<th>최대 전단력 (kN)</th>
<th>최대 측력 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>천단부</td>
<td>최측 측벽부</td>
<td>-3,760</td>
<td>-0,376</td>
<td>267,20</td>
<td>798,60</td>
<td>2928,20</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-5,140</td>
<td>-4,970</td>
<td>781,80</td>
<td>415,50</td>
<td>2248,50</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,683</td>
<td>-0,472</td>
<td>515,90</td>
<td>368,80</td>
<td>3674,90</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-3,090</td>
<td>-0,354</td>
<td>255,90</td>
<td>698,20</td>
<td>2756,70</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-3,990</td>
<td>-4,430</td>
<td>690,10</td>
<td>362,20</td>
<td>2067,70</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,400</td>
<td>-0,414</td>
<td>426,00</td>
<td>350,90</td>
<td>3226,20</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-2,540</td>
<td>-0,337</td>
<td>251,60</td>
<td>616,90</td>
<td>2621,90</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-2,980</td>
<td>-4,040</td>
<td>625,70</td>
<td>336,90</td>
<td>1920,50</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,110</td>
<td>-0,371</td>
<td>360,90</td>
<td>344,90</td>
<td>2886,90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>성도사면 설치 위치</th>
<th>지점</th>
<th>수평변위 (mm)</th>
<th>연직변위 (mm)</th>
<th>최대 휘모멘트 (kN·m)</th>
<th>최대 전단력 (kN)</th>
<th>최대 측력 (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>천단부</td>
<td>최측 측벽부</td>
<td>-1,570</td>
<td>-0,283</td>
<td>62,30</td>
<td>438,30</td>
<td>2205,30</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-2,510</td>
<td>-2,220</td>
<td>276,40</td>
<td>262,80</td>
<td>1498,20</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,727</td>
<td>-0,315</td>
<td>124,40</td>
<td>224,40</td>
<td>2453,80</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-0,803</td>
<td>-0,274</td>
<td>88,10</td>
<td>352,20</td>
<td>2135,70</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>-0,802</td>
<td>-2,160</td>
<td>285,0</td>
<td>247,70</td>
<td>1406,40</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,019</td>
<td>-0,288</td>
<td>88,20</td>
<td>278,80</td>
<td>2242,60</td>
</tr>
<tr>
<td>⅓B 이격</td>
<td>최측 측벽부</td>
<td>-0,487</td>
<td>-0,272</td>
<td>107,66</td>
<td>320,00</td>
<td>2115,70</td>
</tr>
<tr>
<td></td>
<td>천단부</td>
<td>0,0</td>
<td>-2,270</td>
<td>314,70</td>
<td>242,00</td>
<td>1372,60</td>
</tr>
<tr>
<td></td>
<td>우측 측벽부</td>
<td>-0,487</td>
<td>-0,272</td>
<td>107,60</td>
<td>320,00</td>
<td>2115,70</td>
</tr>
</tbody>
</table>
표 7. 해석조건별 콘크리트 라이닝 단면설계

<table>
<thead>
<tr>
<th>해석조건</th>
<th>극한 회몰멘트 (M₁, kN·m)</th>
<th>설계 회몰멘트 (M₂, kN·m)</th>
<th>철근량 (As, cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>지반공학적 해석결과</td>
<td>천단부</td>
<td>751.72</td>
<td>876.7</td>
</tr>
<tr>
<td></td>
<td>⅓B 이격</td>
<td>649.04</td>
<td>701.4</td>
</tr>
<tr>
<td></td>
<td>측벽부</td>
<td>590.94</td>
<td>607.7</td>
</tr>
<tr>
<td>구조공학적 해석결과</td>
<td>천단부</td>
<td>781.80</td>
<td>876.7</td>
</tr>
<tr>
<td></td>
<td>⅓B 이격</td>
<td>690.10</td>
<td>701.4</td>
</tr>
<tr>
<td></td>
<td>측벽부</td>
<td>625.70</td>
<td>701.4</td>
</tr>
<tr>
<td>제한된 토압분포</td>
<td>천단부</td>
<td>276.40</td>
<td>310.2</td>
</tr>
<tr>
<td></td>
<td>⅓B 이격</td>
<td>285.00</td>
<td>310.2</td>
</tr>
<tr>
<td></td>
<td>측벽부</td>
<td>314.70</td>
<td>387.7</td>
</tr>
</tbody>
</table>

단면설계를 수행하였다.

콘크리트 라이닝 단면설계에 동일한 극한 회몰멘트에 대하여 콘크리트 단면의 유효심도 (d), 창근 공정작경 및 안장강도 등에 따라 다양한 단면이 설계될 수 있으나, 본 연구에서는 콘크리트 라이닝 공정영향 인자 변화에 따라 다른 단면의 상호 비교·검토를 위하여 콘크리트 단면의 폭 (B)은 100cm, 유효심도 (d)는 90cm, 안장측 주철근 1열 배근을 기본단면으로 선정하였다. 또한 주철근의 배근간격은 철근조립 및 콘크리트 타설 등과 같은 현장 공정 등을 고려하여 단면설계에서 주철근 배근간격은 100 ~ 125mm로 가정하였다 (그림 12 참조).

해석결과를 토대로 콘크리트 라이닝의 단면설계를 수행한 결과 표 7에서 보이는 바와 같이 지반공학적 해석결과와 본 연구에서 제한한 토압분포를 이용한 구조공학적 해석결과 정토사면 설계위치가 동일한 경우 극한 회몰멘트를 지지하기 위한 설계 회몰멘트 및 소요 철근량은 유지한 것으로 나타났으며, 이론 토압분포를 이용한 구조공학적 해석결과 정토사면에 의하여 발생하는 토압을 고려하지 못하므로 설계 회몰멘트 및 소요 철근량이 상기 두 가지 해석결과에 비하여 작게 산정되었다. 따라서, 토압을 고려하지 않은 해석 및 설계는 토압압에 의하여 크게 증가되는 부재력 및 변위를 고려할 수 없으며, 복개 터널구조물의 안정성을 확보할 수 없을 것으로 판단된다. 따라서 본 연구에서 제한한 토압분포는 이론 토압분포 보다 토압압의 영향에 의한 복개 터널구조물의 저항을 합리적으로 나타내는 것으로 판단된다. 또한 복개 터널구조물에 작용하는 편도압 영향을 고려하지 않은 경우 콘크리트 라이닝 단면설계에 설계 회몰멘트 및 철근량 등을 과소 평가하게 되어, 복개 터널구조물의 안전성을 확보할 수 없는 것으로 나타났다.

4. 결론

본 연구에서는 정토사면에 의한 토압압을 고려한 협력
적인 복개 터널구조물 해석 및 설계를 위한 기존연구로서, 지반공학적 모델링 기법을 이용하여 성토사면에 의한 편토압 과력 방안을 제안하였으며, 구조공학적 해석 기법을 통하여 제안된 편토압 과력방안의 적용성 검토를 통하여 다음과 같은 결론을 얻었다.

1. 콘크리트 라이닝 천단부 토피와 성토사면의 설치위치가 동일한 경우 굴착사면의 구배가 완만해질 때 따라 편토압의 영향이 증가하고, 굴착사면 구배 및 성토사면 설치위치 조건이 동일한 경우 토피 고가 증가함에 따라 편토압의 영향이 증가하며, 성토사면 성토량과 편토압은 높은 상관관계가 있는 것으로 나타났다. 따라서, 성토사면 성토체의 성토량이 복개 터널구조물에 작용하는 편토압의 발생에 가장 큰 영향인자라고 판단된다.

2. 성토사면의 영향으로 인하여 복개 터널구조물에 작용하는 편토압을 고려하기 위하여, 본 연구에서는 수직 해석 기법을 이용하여 각 해석조건별로 성토사면이 교차되지 않은 수평성토 완료 단계에서의 연계 및 수평 모델분포를 계산하고, 이러한 모델분포를 계산한 테이프 라이닝의 폭과 높이에 균일하게 작용하는 모델분포 하중으로 편토압을 계산하여, 콘크리트 라이닝에 작용하는 모델분포를 계산하였다. 또한 성토사면 사양에 의한 편토압은 사양에서 제안된 모델분포 하중에 성토사면에 의해 발생하는 하중을 구성사면의 성토량 변화에 따라 모델분포 수평토압과 삼각형 형상의 변동 분포 연계토압 분포를 제안하였다.

3. 복개 터널구조물에 작용하는 편토압을 고려하기 위하여 제안한 모델분포의 적정성 검토를 위하여 동일한 해석조건에 대하여 구조공학적 해석 및 지반공학적 해석을 이용한 수직해석을 수행하였으며, 두 해석 결과를 토대로 콘크리트 라이닝 단면설계를 수행하였 다. 구조해석 및 지반공학적 해석결과에 의한 콘크리트 라이닝 단면설계 결과 설계 테크모델 및 소요 철근량은 수량한 것으로 나타났으며, 따라서, 본 연구에서 수직해석 기법을 이용하여 성토사면의 영향에 의한 편토압 과력 위한 테이프분포는 복개 터널구조물의 과성적 전략적으로 모사하는 것으로 판단한다.

4. 복개 터널구조물의 설계 및 해석을 위하여 현재 일반적으로 적용되고 있는 구조공학적 모델링 기법은 콘크리트 라이닝 측벽부 외측부분에 성토사면이 교차되는 경우, 편토압의 영향을 합리적으로 고려할 수 있으며, 따라서 콘크리트 라이닝 단면설계 설계 테크모델 및 철근량 등을 과소 평가하게 되며, 복개 터널구조물의 안전성을 확보할 수 없는 것으로 나타났다.

참고문헌

벽규진
한국건설기술연구원 지반연구부 연구원
gbae@kict.re.kr

이규필
한국건설기술연구원 지반연구부 연구원, 한양대학교 토목공학과 박사과정
freely@kict.re.kr

정형식
한양대학교 토목공학과 교수
chunghs@ihanyang.ac.kr