Outdoor Applications of Hyperspectral Imaging Technology for Monitoring Agricultural Crops: A Review

Mohammad Raju Ahmed1, Jannat Yasmin1, Changyeun Mo2, Hoonsoo Lee3, Moon S. Kim3, Soon-Jung Hong4, Byoung-Kwan Cho1*

1Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
2National Academy of Agricultural Science, Rural Development Administration, 310 Nongsaengmyeong-ro, Wansan-gu, Jeonju, Jeollabuk-do 54875, Korea
3Environmental Microbiology and Food Safety Laboratory, BARC-East, Agricultural Research Service, US Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
4Rural Human Resource Development Center, 420 Nongsaengmyeong-ro, Wansan-gu, Jeonju, Jeollabuk-do 54874, Korea

Received: August 9th, 2016; Revised: October 28th, 2016; Accepted: November 10th, 2016

Abstract

Background: Although hyperspectral imaging was originally introduced for military, remote sensing, and astrophysics applications, the use of analytical hyperspectral imaging techniques has been expanded to include monitoring of agricultural crops and commodities due to the broad range and highly specific and sensitive spectral information that can be acquired. Combining hyperspectral imaging with remote sensing expands the range of targets that can be analyzed. Results: Hyperspectral imaging technology can rapidly provide data suitable for monitoring a wide range of plant conditions such as plant stress, nitrogen status, infections, maturity index, and weed discrimination very rapidly, and its use in remote sensing allows for fast spatial coverage. Conclusions: This paper reviews current research on and potential applications of hyperspectral imaging and remote sensing for outdoor field monitoring of agricultural crops. The instrumentation and the fundamental concepts and approaches of hyperspectral imaging and remote sensing for agriculture are presented, along with more recent developments in agricultural monitoring applications. Also discussed are the challenges and limitations of outdoor applications of hyperspectral imaging technology such as illumination conditions and variations due to leaf and plant orientation.

Keywords: Hyperspectral imaging, Outdoor monitoring, Remote sensing, Plant stress, Nitrogen status

Introduction

The world population is increasing steadily. Increasing agricultural production to meet the increasing demand has become one of the most challenging tasks for achieving global food security (Senthilnath et al., 2016). Agricultural resources, such as land for planting and water for irrigation, are quite limited, which makes the problem even more challenging. By 2050, production needs to be increased by ~60%, compared with the yield in the 2005-2007 period (Alexandratos and Bruinsma, 2012). Therefore, significant attention has been devoted to developing new technologies to increase agricultural production.

Spectral imaging was introduced nearly 40 years ago. In the early 1990’s, this technology was limited to terrestrial military applications, remote sensing, and astrophysics (Renz and Ryerson, 1999). Spectral imaging combines digital imaging and spectroscopy; therefore, the resulting image provides more detailed information about the scene than the image acquired using a conventional color camera. In multispectral imaging (MSI), the same image is acquired in several wavelength regions, using only a very limited number of spectral bands. Hyperspectral imaging
(HSI), on the other hand, divides the spectrum into many bands (Yang et al., 2014), each with a very narrow bandwidth. In the term hyperspectral, “hyper” refers to using many light sensors, each with a very narrow range of sensitivity (Ahmadi et al., 2013). HSI is a very powerful technique for measuring, analyzing, and interpreting spectra acquired from a given object or scene. The technique can be used in applications involving very short and very long distances, by employing airborne or satellite-based sensors (Goetz et al., 1985). Owing to their high information content, hyperspectral images are well-suited for automated image processing, which can be used for monitoring agricultural crops, both indoors and outdoors.

The application of HSI with remote sensing in agriculture will allow for real-time gathering of crop condition data, monitoring of the field environment, and precise irrigation and supply of fertilizers to the crops, which will increase production while decreasing cost and labor. This imaging method also allows for disease detection and weed mapping in agricultural crops, and will yield information on vegetation characteristics, estimated yield, maturity stages, and seed viability, all of which play vital roles in increasing production. HSI with remote sensing is a rapid, easy, and non-destructive technique that has been used by many researchers in agricultural fields (Thenkabail et al., 2000; Apan et al., 2004; Jay et al., 2010; Yang et al., 2014; Nansen et al., 2015; Senthilnath et al., 2016), making it a promising analytical tool for agricultural applications.

In this paper, we summarize the current research and potential applications of HSI and remote sensing for outdoor agricultural crop monitoring. To facilitate a better understanding of HSI, the foundations and instrumentation of the method are also presented here, along with brief explanations of the uses of HSI and remote sensing in agriculture. We review papers published during the last few decades, in order to demonstrate the various outdoor applications of this method. Limitations of the outdoor use of spectral imaging technology are also discussed.

HSI foundations and instrumentation

When light is focused on an object or material, the object instantly reacts; this light-matter interaction is the basis of spectral imaging. Visible light and other types of electromagnetic radiation are normally defined in terms of their wavelengths. The light-matter interaction is wavelength-dependent, and the outcomes of different interactions are often manifested in reflectance, transmittance, absorbance, phosphorescence, fluorescence, or radioactive decay. These manifestations provide a detailed fingerprint of a sample in terms of its physical characteristics (Figure 1) (ElMasry and Sun, 2010). Electromagnetic radiation is divided into several types depending on the wavelength: gamma rays, X-rays, ultraviolet radiation (UV), visible light (VIS, 0.4-0.7 µm), near-infrared (NIR, 0.7-1.0 µm), short-wave infrared (SWIR, 1.0-2.5 µm), mid-infrared (MWIR, 2.5-15 µm), far-infrared, microwaves, and radio waves (FM and AM) (Fischer and Kakoulli, 2006; ElMasry and Sun, 2010). Each region is correlated to distinctive atomic or molecular transitions, according to the radiation energy. For HSI, NIR to MWIR range radiation is most commonly used for monitoring and quality inspection of agricultural products (ElMasrya et al., 2012; Kandpal et al., 2015).

When photons are incident on the surface of a medium or an object, light-matter interaction takes place immediately. Depending on the energy of the incident photons, the atoms in the irradiated sample will transition into lower or higher molecular energy levels, indicating a change in the vibrational mode of the bonds between the atoms. Consequently, the extent to which light is emitted or absorbed defines the properties of the material. A detector reacts to the irradiation and records the amount of light that is emitted or absorbed. The two main types of detectors are thermal and photonic. In HSI of agricultural crops, photonic detectors are commonly used for monitoring. Different types of detectors have been proposed; in particular, charge-coupled devices (CCDs) that are made from low-cost lead...
Table 1. Characteristics of HSI systems used in agricultural applications

<table>
<thead>
<tr>
<th>Detectors</th>
<th>Spectral range</th>
<th>Application in agriculture</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>detecting bruises on apple</td>
<td>Xing et al., 2005</td>
</tr>
<tr>
<td>MCT</td>
<td>900-1700 nm</td>
<td>detecting aflatoxin on corn kernels</td>
<td>Kandpal et al., 2015</td>
</tr>
<tr>
<td>CCD</td>
<td>398-1010 nm</td>
<td>detecting blueberry fruit maturity</td>
<td>Yang et al., 2014</td>
</tr>
<tr>
<td>CCD</td>
<td>550-800 nm</td>
<td>detecting fungal diseases</td>
<td>Moshou et al., 2011</td>
</tr>
<tr>
<td>CCD</td>
<td>400-720 nm</td>
<td>detecting external insect infestations</td>
<td>Wang et al., 2011</td>
</tr>
<tr>
<td>CCD</td>
<td>385-1000 nm</td>
<td>detecting water stress</td>
<td>Kim et al., 2011</td>
</tr>
<tr>
<td>CCD</td>
<td>650-1100 nm</td>
<td>measuring soluble solids</td>
<td>Martinsen and Schaare, 1998</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>bruise damage detection on mushrooms</td>
<td>Gowen et al., 2008</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>quality attributes for strawberry</td>
<td>ElMasry et al., 2007</td>
</tr>
<tr>
<td>CCD</td>
<td>600-1000 nm</td>
<td>detection of apple fruit firmness</td>
<td>Lu and Peng, 2007</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>evaluation of the shelf-life of mushrooms</td>
<td>Taghizadeh et al., 2010</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>defect and surface color of whole pickles</td>
<td>Ariana and Lu, 2010</td>
</tr>
<tr>
<td>CCD</td>
<td>430-900 nm</td>
<td>poultry inspection</td>
<td>Lu and Chen, 1999</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>maturity stages of banana</td>
<td>Rajkumar et al., 2012</td>
</tr>
<tr>
<td>CCD</td>
<td>500-1000 nm</td>
<td>peach fruit firmness</td>
<td>Lu and Peng, 2006</td>
</tr>
<tr>
<td>CCD</td>
<td>400-1000 nm</td>
<td>wheat and weed discrimination</td>
<td>Hadoux et al., 2014</td>
</tr>
</tbody>
</table>

Remote sensing in agriculture

The situation in which there is no contact between the sensor and the analyzed object or area is referred to as remote sensing. Monitoring of the biochemical and biophysical attributes of crops is very important for improving plant productivity as well as for investigating water-stress, pigment and moisture content, and nutrient availability. These data can be obtained using direct field techniques; however, this approach is both time-consuming and laborious. On the other hand, remote sensing requires less time, is non-destructive, and provides spatial estimates for quantifying and monitoring these attributes. Satellite or airborne remote sensing is used for monitoring management in agricultural fields. Lamb and Brown (2001) used airborne remote sensing to identify weeds in the monitored crops. They made two important notes regarding remote sensing: (i) sufficient differences in spectral reflectance or texture exist between weeds and their background soil or plant canopy, and (ii) remote sensing offers an appropriate spatial and spectral resolution for detecting the presence of weed plants. Application of remote sensing for monitoring crop stress, resulting from, e.g., weeds, disease, insects, water, frost, and soil temperature changes, was described by Hatfield and Pinter in 1993. In 1997, Moran et al. reviewed the potential and the limitations of remote sensing for monitoring crops in precision agriculture. They listed the potential of remote sensing for detecting the soil moisture content, crop phonologic stage, crop nutrient deficiencies, crop disease, weed infestation, and insect infestation. In contrast, instrument calibration, atmospheric correction, and cloud screening were identified as the limitations of remote sensing.

HSI in agriculture

Spectral imaging is defined as a serial acquisition of many digital images, with distinct and well-defined optical wavelengths. There are two main categories-MSI and HSI. MSI refers to the situation in which the number of wavelength bands is 10 or fewer (GIS Geography, 2016; eXtension, 2016); this method has been used in
many areas, including agriculture (Muir et al., 1982; Kim et al., 2002; Lu, 2004; Park et al., 2004). HSI refers to the situation in which the number of wavelength bands is larger than 10.

The major limitation of MSI is its low spectral resolution. This sometimes causes a loss of some critical information, as MSI averages spectral information over broadband widths (Blackburn, 1998; Thenkabail et al., 2000). In contrast, HSI with remote sensing examines many contiguous, narrow spectral channels (Campbell, 1996); thus, it is able to provide additional information, and no critical data are lost. HSI with remote sensing is better than MSI and demonstrates versatility for a variety of crop monitoring applications (Hunt et al., 1989; Blackburn, 1998; Champagne et al., 2003; Zhu et al., 2006; Wang et al., 2008; Prabhakar et al., 2011; Ranjan et al., 2012; Pradhan et al., 2014; Mahajan et al., 2014; Prasannakumar et al., 2014). HSI has already proven to be very effective in defense, agricultural research, and environmental applications (Lu and Chen, 1999; Ustin et al., 2004; Farley et al., 2007).

To identify subtle spectral features corresponding to the chemical and physical properties of an object, HSI spectrometers acquire data in high spectral resolution domains. This has a powerful capability for use in agricultural crop monitoring, vegetation monitoring, and water quality assessment (Thenkabail et al., 2000; Kim et al., 2011). In the last decade, HSI technology has been used for detecting bruises and bitter pits on apples and mushrooms (Nicolai et al., 2006; Gowen et al., 2008), for measuring fruit maturity, firmness and soluble solid content (ElMasry et al., 2007; Lu and Peng, 2007; Noh et al., 2007), for detecting deterioration in mushrooms (Taghzadeh et al., 2010), and for detecting chilling injuries and internal defects in cucumbers (Cheng et al., 2004; Ariana and Lu, 2010).

Outdoor applications of HSI with remote sensing in agriculture

HSI is a powerful tool for monitoring agricultural crops. However, the potential outdoor applications of HSI have not been fully explored, owing to some limitations such as variations in the light intensity, background noise, and leaf orientations. Some techniques for overcoming these limitations are discussed below. These barriers are expected to be completely overcome in the near future as HSI technology is improving rapidly.

Chlorophyll pigments and nitrogen status of crop plants

Wheat is one of the most important food crops worldwide. Monitoring is essential for increasing the production of wheat, and much research has been done on applying HSI with remote sensing to real wheat fields. In wheat monitoring, the key monitored quantities are water stress, nitrogen status, and fungal diseases. Lawlor (2001), Haboudane et al. (2002), and Rodriguez et al. (2005) determined that the presence of chlorophyll pigments in leaf tissues strongly affects the electromagnetic spectrum in the visible region, especially in the blue (450 nm) and red (670 nm) bands. In addition, a relationship between the concentrations of leaf nitrogen and chlorophyll pigments was established; strong absorption of these two wavelengths increased the concentration of chlorophyll pigments, indicating that the leaves of the crop contain high amount of nitrogen. Thus, spectral analysis can provide a measure of nitrogen content.

Plant leaves contain spongy mesophyll cells that strongly reflect infrared wavelengths in the NIR region. In 2000, Barnes et al. have studied reflectance in the NIR region, especially in the red limit. In the visible region, red wavelength reflectance is very low, owing to absorption by chlorophyll for photosynthesis. By contrast, reflectance is dominant in the NIR region, owing to the cellular structure of the leaves. The location of the inflection point (the point of maximal gradient), also termed the “red edge,” correlates with the plant chlorophyll amount (Figure 2). Therefore, electromagnetic energy reflected from plant leaves and canopies can be used for estimating the chlorophyll concentration, providing an estimate of the nitrogen content (Haboudane et al., 2002). Lee et al. (2000) found that combining red edge wavelengths with NIR wavelengths yielded good precision and accuracy in predicting cotton leaf nitrogen concentration. Tilling et al. (2006) conducted an experiment on wheat fields using HSI with remote sensing to determine the nitrogen stress. They used a portable spectro-radiometer (FieldSpec® Pro, Analytical Spectral Devices, Boulder, CO, USA) to collect spectral reflectance in the 390-2500 nm range. The experiment was conducted in both 2004 and 2005 over 48 plots (18 m × 12 m), using four rates of nitrogen fertilization (0, 16, 39, and 163 kg N/ha) and two rates of nitrogen fertilization (0 and 39 kg N/ha), respectively. HSI data were collected at a canopy level using a light aircraft. After developing the nitrogen stress index, the researchers found that the amount of nitrogen decreases...
through the season owing to depletion of available nitrogen during crop growth. In 2008, Feng et al. determined the relationships between leaf nitrogen concentration and leaf dry weight (LNC), and between leaf nitrogen accumulation per unit soil area (LNA) and ground-based canopy hyperspectral reflectance, in order to establish quantitative models for real-time monitoring of leaf nitrogen in wheat, with particular hyperspectral bands, to reduce the amount of data and to expedite the computation, which is most important for real-time monitoring. In numerous studies, both HSI and MSI have proved their efficiency in assessing physiological parameters and nutrient levels in crop plants. Hinzman et al. (1986), Takebe et al. (1990), McMurtrey et al. (1994), and Diker and Bausch (2003) studied the nitrogen effect on wheat, rice, and corn, respectively, using spectral reflectance. In addition, Casanova et al. (1998) and Hansen and Schjoerring (2003) conducted experiments to determine vegetation indices for rice and wheat fields using HSI.

Maturity identification

Fruits from the same cluster normally mature at different times. A cluster may contain all growth stages, including young fruit, intermediate fruit, and mature fruit. In 2014, Yang et al. reported a method for detecting different blueberry fruit maturity stages using field HSI. They investigated the feasibility of HSI for classifying blueberry growth stages. They also determined useful spectral bands suitable for an MSI system since an MSI system has a higher processing speed and lower cost. The spectral range was 398-1010 nm with a spatial resolution of 1 mm. The original image contained 776 bands with a spectral resolution of 0.79 nm; thus, the images had a very large size. Therefore, binning was used to reduce the spectral resolution by half, i.e., to 388 bands with a spectral resolution of 1.59 nm. The data for the different fruit growth stages are shown in Figure 3. Leaf pixels were used for showing the background spectrum because most of the background was occupied by leaves.

In the NIR region, leaves exhibited high reflectance, because they contained the largest amount of chlorophyll pigments. By contrast, the mature fruits were very dark, thus exhibiting a comparatively low reflectance. The intermediate fruits were red and the young fruits were green; thus, these exhibited higher values in the red and green bands, respectively.

In addition, many investigations of fruit maturity using HSI, based on laboratory measured spectral data, have been performed (Nagata et al., 2004, Carley, 2006; Lu and Peng, 2006; Rajkumar et al., 2012; Yang et al., 2012).

Detection of disease or infections

Typically, healthy plants interact (absorb, reflect, emit, transmit, or fluoresce) with electromagnetic radiation differently from infected plants. Using this hypothesis, Moshou et al. (2011) investigated arable crops for which hyperspectral reflectance and MSI techniques were developed for simultaneous acquisition in the canopy. Lee et al. (2010) reported that fluorescence spectroscopy is the most appropriate technique for detecting fungal disease. When a leaf or stem is infected with fungi, it loses pigmentation, so that photosynthetic processes cannot run properly. As a result, the cell walls collapse and the infection patterns become visible. According to Lee et al. (2010), pathogen propagation and chlorophyll degradation can be detected in the visible region (400-700 nm) and at the red edge (related to chlorophyll), while short wave NIR
(680-800 nm) and NIR (1400-1600 nm and 1900-2100 nm) are suitable for detecting browning and dryness, respectively. In wheat, rye, barley, and oat production, *Fusarium* infections often cause serious problems by reducing yield and grade and may also contaminate the grain with fungal toxins. Bauriegel et al. (2011) studied wheat using HSI for early detection of *Fusarium* infections. *Fusarium* infections cause head blight disease in the wheat plants, which can be detected by performing spectral analysis (400-1000 nm). The group began with laboratory experiments with the plants under controlled conditions in a greenhouse. The plants were artificially inoculated with a mixture of pathogens of the strain *F. culmorum* on three successive days from the beginning of flowering, and then, data were acquired. After that, the experiment was moved to the field (Julius-Kuehn-Institute, Braunschweig, Germany). According to the published report, head blight could successfully be recognized during its development. The use of HSI for detecting various diseases in crop plants is currently under extensive investigation. Pozdnyaakova et al. (2002), Williams et al. (2010), and Bauriegel et al. (2010) studied, respectively, the phytophthora root rot, *Fusarium verticilloides* in maize and *Fusarium* head blight detection on wheat using HSI. In addition, Sankaran et al. (2010) reviewed the use of HSI techniques for detecting plant diseases. In many studies, it was also found that the spectral signatures of the crop plants were changed by the fungi and bacterial damage at molecular, cellular and/or tissue levels (Zhensheng and Buchenauer, 2000; West et al., 2003).

Plant stress detection

Plant stress owing to biotic or abiotic factors is expressed in the plant canopy by a variety of symptoms. Productivity is significantly reduced when a plant becomes stressed. Therefore, early detection of plant stress is critical for minimizing the loss of productivity. Machine vision algorithms and infrared imagery have already been applied for estimating plant water stress in tomato canopies, olive orchards, and deciduous trees by Kurata and Yan (1996), Kacira et al. (2002), Sepulcre-Canto et al. (2006), and Naor (2008), respectively. However, plant stress can be a compound result of the effects of water and nutrient levels, disease, and insects, which makes accurate stress detection very challenging. Recent studies indicate that HSI can be used for efficiently detecting plant stress. Using a hyperspectral camera, the spectral signature of plant leaves was analyzed to identify the onset and intensity of plant water stress. Kim et al. (2011) studied young apple trees inside of a greenhouse with five different levels of water treatment. A hyperspectral camera, along with an active-illuminated spectral vegetation sensor and a digital color camera, was used to monitor the plants within a spectral range of 385-1000 nm. Chlorophyll and xanthophylls in plant leaves absorb most of the radiance in the visible region; in contrast, reflectance occurs in the NIR region. When a plant becomes stressed, the reflectance pattern changes owing to a reduction in photosynthetic absorbance. As a result, reflectance increases in the visible region and decreases in the NIR region. Thus, plant stress can be estimated by combining data from these different spectral bands. Zygielbaum et al. (2009) observed drought stress in maize plants inside a greenhouse. They investigated the reflectance at two wavelengths related to relative water content and reported optimal results for R_{520}/R_{720} with an $R^2 = 0.99$. Vegetation indices (VIs) correspond to a mathematical combination or transformation of spectral regions that accentuates the spectral properties of green plants such that they appear distinct from other image features. Curran et al. (2001) and Sanches et al. (2013) successfully applied VIs in photogrammetry and remote sensing for plant-related research, especially for identifying stressed plants.

Crop plant and weed discrimination

The use of spectral properties to differentiate plant species was reviewed by Zwiggelaar (1998). That review included a discussion on different modeling approaches to estimate reflection from crops using optical and chemical information. The identification of weeds in an agricultural field via remote sensing was reviewed by Thorp and Tian (2004). The researchers discussed the use of different canopy spectral responses of weeds and crops for discriminating between weeds and crops using remote sensing technology. Hadoux et al. (2014) reported a method for discriminating weeds and wheat using spectra acquired in the real field, where lighting and leaf orientations were uncontrolled. The vegetation spectra of weeds and wheat are highly similar; thus, large spectral variability was required for differentiating weeds from wheat. Several pre-treatment methods, such as centering, linear de-trending, normalization, logarithmic transformation, first and second derivation, and smoothing, combined
with partial least squares linear discriminant analysis (PLS-LDA), and Gaussian support vector machine (SVM) were applied to remove nuisance variability such as soil and leaf orientation differences. The best discrimination was obtained using a combination of the logarithmic transformation and PLS-LDA method (Hadoux et al., 2014). Borregaard et al. (2000) and Piron et al. (2008) estimated the effective wavelengths for discriminating carrots from weeds, and potatoes from various weed leaves, under artificial lighting.

Other applications

Xiao and Xu (2010) investigated the impact of heavy metals on wheat leaves, which is relevant when the irrigation water is supplied from sewage. Hyperspectral remote sensing technology was used, and the spectral region was 350-1050 nm with a resolution of 3 nm. The researchers used an atomic absorption flame spectrophotometer for detecting the copper and zinc content, and used graphite furnace atomic absorption spectrometry for detecting the lead content. Differences between reflectance characteristics of wheat leaves irrigated by clear ground water and by sewage were evaluated, revealing that high amounts of copper, zinc, and lead affect the chlorophyll content of vegetation.

Spectral variation among four grape varieties (Cabernet Sauvignon, Merlot, Semillon, and Shiraz) was examined by Lacar et al. (2001). The objective of that study was to evaluate the potential of airborne visible-NIR hyperspectral imagery for discrimination and mapping of grape vine varieties, namely Shiraz and Cabernet Sauvignon. The experiment was conducted at the Koonunga Hill vineyard in the Barossa Valley, South Australia. The spectral region was 400-900 nm, and 80 spectral samples were randomly selected for each variety. The images were statistically analyzed to determine whether there were any differences between the two varieties, and if so, to identify the spectral regions in which the differences were the most significant. Nine bands in the visible region (400-700 nm) of the spectrum were identified, while the infrared band at 711 nm showed only a slight difference.

Limitations

While the spectral properties of agricultural crops have been analyzed in a laboratory, they cannot be directly compared to outdoor measurements owing to the different measurement conditions. Light sources are controlled and stable in the laboratory setting. In addition, the samples are well prepared with little background noise, which makes the environment ideal for collecting spectral data. In contrast, field measurement uses sunlight as its illumination source, and the background contains various types of plant leaves, stems, soil, sky, and man-made objects such as polyvinyl chloride (PVC) irrigation pipes. Owing to the inconsistency of sunlight and the increased background noise, acquisition of spatial and spectral data becomes more critical (Yang et al., 2014). Leaf orientation is also a major factor in discriminating between different plant species when HSI is used outdoors. Franz et al. (1991) reported that accurate spectral discrimination is possible for controlled leaf orientations, but discrimination accuracy significantly decreases as soon as leaf orientation changes. Vigneau et al. (2011) explored the effect of leaf orientation for building a predictive model for nitrogen content using HSI. Identifying weeds in the crop rows is a much more difficult problem, which requires more advanced processing of spectral data (Brown et al., 2005; Slaughter et al., 2008; Hadoux et al., 2012). However, some studies have attempted to overcome these limitations. For example, to reduce the soil background noise, Rondeaux et al. (1996) proposed a soil-adjusted vegetation index (SOAVI), and Gitelson et al. (2002) proposed a visible atmospherically resistant index (VARI) to revise atmospheric effects on spectra. Demetriades-shah et al. (1990) reported that derivative spectral indices minimized background noise and resolved mixed spectra in comparison with the conventional broad-band spectral indices.

Conclusion

HSI is a growing technology that has already proved its potential in the laboratory setting. However, with regard to outdoor applications, much remains to be solved. In this paper, many different outdoor applications of HSI with remote sensing have been reviewed. The monitoring of plant stress, determination of nitrogen status and fruit maturity, early detection of infections, and weed discrimination are important tasks that are vital for increasing the crop production. HSI has been shown to enable fast data acquisition on all of these attributes, and remote sensing enables one to cover a vast area. Variable illumination, background noise, and leaf orientation are the primary limitations precluding the use of HSI outdoors; further
research is required for developing acquisition and processing techniques that will allow to overcome these limitations.

Conflict of Interest

The authors have no conflicting financial or other interests.

Acknowledgement

This research was supported by Export Strategy Technology Development Program, Ministry of Agriculture, Food and Rural Affairs (MAFRA).

References

Ahmed et al. Outdoor Applications of Hyperspectral Imaging Technology for Monitoring Agricultural Crops: A Review

Journal of Biosystems Engineering • Vol. 41, No. 4, 2016 • www.jbeng.org

GIS Geography. 2016. Available at: http://gisgeography.com/multispectral-vs-hyperspectral-imagery-explained/

Kacira, M., P. P. Ling and T. H. Short. 2002. Machine vision...

Xenics. 2016. Xenics Infrared Solutions. Available at: www.xenics.com

