組織培養液 199培地에 依한 家兎卵子의 低温(5°C) 保存

田 暢 淑・石 島 芳 郎

＜農科大學 威望郭科・東京農業大學＞

序論

家兎卵子에 低温保存에 関해서는 이미 CHANG(1, 3-4, 6) 및 Hafez(7, 8, 9)가 詳細한 検討을 했다. CHANG(1, 3-4, 6)은 家兎血清 또는 血漿에 Physiological Saline을 添加한 Medium을 使用하여 家兎의 1Cell-blastocyst 期의 受 精卵子를 0〜10°C에서 2〜7日間 保存에 成功하고 있다. 또 Hafez(7, 8, 9)는 家兎血清에 7% Gelatin을 添加한 保存液을 使用하여 家兎의 2〜8細胞期의 卵子를 10°C에서 7〜14日間을 保存에 成功하고 있다.

이 階著者等이 血漿을 主体로 保存으
로 家兎卵子의 低温保存方法은 導의 順立되고 있으나 近年の 研究는 卵子의 培養에 非이 使用되고 있는 組織培養液(Tissue Culture media)
을 家兎卵子의 保存으로 利用하고 있는 報告
는 少아물수 없다.

여기에서 階著者等은 組織培養液으로서 開発
되어 哺乳動物卵子의 培養에 使用되고 있는
TC199가(12, 14) 家兎卵子의 保存液으로서 使用
될 수 있는가를 検討하였다.

実験材料及方法

1) 卵子의 採取

本實験에는 過排卵處理家兎이 交尾後 48時
間의 卵管에서 採取한 16細胞期의 卵子를 使用하였다. (Fig. 1) 過排卵處理는 石島等(11)의 方法을 採用하여 次과 같이 하였다. 即日

Fig.1. Rabbit 16-cell ova. These ova were recovered from oviduct 48 hrs. post coitum.

量 40IU의 PMS(Serotropin 帝漿)을 5日間 皮下注射하여 PMS最終日에 0.1mg의 Estradiol (卵胞生成素・帝漿)の 筋肉注射を 追加하여 48時
間後で 交配し 兩 50IU의 HCG (興沖動
物医薬品 検査所標準品 日本)を 静脈注射した
後 卵子の 採取は 交配後 48時間に 分発した 家
兎の 摘出卵管を 37°C에서 保存した TC199液を 加
えて 激流하였다.

2) 保存液的 調整及保存方法

a. 保存液의 調整

保存液으로 使用한 TC199, 家兎血清 및 生
理的食塩水는 史著者 간이 調整하였다. TC
199; 市販の 組織培養液 199培地(,request)의 粉
末 9.9g을 2回以上 蒸溜한 후 11℃ 濃縮에서
지기역 重曹 1g를 가하여 pH7.2로 조절하고 열에 1분 후 동료에 화합물이 쌍하여 사용할 때까지 보관하였다.

다음은 1986년 9.9g(1l)의 성분 분량은 다음과 같다.

<table>
<thead>
<tr>
<th>성분</th>
<th>분량 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Arginine chloride</td>
<td>70.0</td>
</tr>
<tr>
<td>L-Histidine chloride</td>
<td>20.0</td>
</tr>
<tr>
<td>L-Lysine chloride</td>
<td>70.0</td>
</tr>
<tr>
<td>DL-Tryptophane</td>
<td>20.0</td>
</tr>
<tr>
<td>DL-Phenylalanine</td>
<td>50.0</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>30.0</td>
</tr>
<tr>
<td>DL-Serine</td>
<td>50.0</td>
</tr>
<tr>
<td>DL-Valine</td>
<td>50.0</td>
</tr>
<tr>
<td>DL-Threonine</td>
<td>60.0</td>
</tr>
<tr>
<td>DL-Leucine</td>
<td>120.0</td>
</tr>
<tr>
<td>DL-Isoleucine</td>
<td>40.0</td>
</tr>
<tr>
<td>DL-Glutamic acid</td>
<td>150.0</td>
</tr>
<tr>
<td>DL-Aspartic acid</td>
<td>50.0</td>
</tr>
<tr>
<td>DL-Alanine</td>
<td>50.0</td>
</tr>
<tr>
<td>L-Proline</td>
<td>40.0</td>
</tr>
<tr>
<td>L-Hydroxy Proline</td>
<td>10.0</td>
</tr>
<tr>
<td>Chrysisin</td>
<td>50.0</td>
</tr>
<tr>
<td>L-Curcumine</td>
<td>100.0</td>
</tr>
<tr>
<td>L-Cystine</td>
<td>20.0</td>
</tr>
<tr>
<td>Choline tartaric acid</td>
<td>0.920mg</td>
</tr>
<tr>
<td>D-2-Deoxy ribose</td>
<td>0.500mg</td>
</tr>
<tr>
<td>Adenine</td>
<td>10.00mg</td>
</tr>
<tr>
<td>Guanine chloride</td>
<td>0.300mg</td>
</tr>
<tr>
<td>Hypoxanthine</td>
<td>0.300mg</td>
</tr>
<tr>
<td>Thymine</td>
<td>0.300mg</td>
</tr>
<tr>
<td>Uracil</td>
<td>0.300mg</td>
</tr>
<tr>
<td>Xanthine</td>
<td>0.200mg</td>
</tr>
<tr>
<td>Adenylic acid</td>
<td>0.200mg</td>
</tr>
<tr>
<td>D-Ribose</td>
<td>0.500mg</td>
</tr>
<tr>
<td>Polysorbate 80</td>
<td>5.000mg</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.20mg</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>40.00mg</td>
</tr>
<tr>
<td>L-Systein chloride</td>
<td>0.1mg</td>
</tr>
<tr>
<td>P-Amine benzoic acid</td>
<td>0.050mg</td>
</tr>
<tr>
<td>Biotine</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Potassium pantothenic acid</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Folic acid</td>
<td>0.010mg</td>
</tr>
<tr>
<td>L-Insitol</td>
<td>0.05mg</td>
</tr>
<tr>
<td>Nicotinic acid</td>
<td>0.025mg</td>
</tr>
<tr>
<td>Nicotinic acid amide</td>
<td>0.025mg</td>
</tr>
<tr>
<td>Pyridoxal chloride</td>
<td>0.025mg</td>
</tr>
<tr>
<td>Pyridoxine chloride</td>
<td>0.025mg</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>0.100mg</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>0.050mg</td>
</tr>
<tr>
<td>X-Tocopherol disodium</td>
<td></td>
</tr>
<tr>
<td>Phosphoric acid</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Calciferol 0.100mg</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Menathion</td>
<td>0.010mg</td>
</tr>
<tr>
<td>Glutathion</td>
<td>0.050mg</td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>50.00mg</td>
</tr>
<tr>
<td>Triphosphoric disodium</td>
<td></td>
</tr>
<tr>
<td>adenosine</td>
<td>10.00mg</td>
</tr>
<tr>
<td>Glucose</td>
<td>1000mg</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>6800mg</td>
</tr>
<tr>
<td>Potassium chloride (anhydride)</td>
<td>200mg</td>
</tr>
<tr>
<td>Magnesium sulfate</td>
<td>200mg</td>
</tr>
<tr>
<td>Sodium phosphate</td>
<td>125mg</td>
</tr>
<tr>
<td>Ferrous wtrate</td>
<td>0.1mg</td>
</tr>
<tr>
<td>Phenol red</td>
<td>6mg</td>
</tr>
</tbody>
</table>

해삼성: 해삼성은 방광결제 후에 쌍하여 사용한 후 해양식품에 24시간 이상에서 사용한 후 해양식품을 면면분해하여 사용하였다.

생산의 꿀:s 85%의 꿀을 화합물을 사용하여 사용하였다.

b. 保存方法
保存液으로서 TC199시켰는는 TC199시 키, 해삼성은 꿀 각각 20, 40, 60과 80%를 투여, 해삼성은 시료, 생작의 숙청시액 및 생작의 숙청시액은 Medium를 만들었다.

조유 저장은 각Medium를 2ml의 Ampoule에 Medium를 1ml을 넣어 저기에서 5ug/ml의 Streptomycin과 Penicillin을 투여하여 2Am-
poule에 모든 10주기의 15일 세포의 卵子를 넣어 密封하였다.

卵子를 넣은 Ampoule 속 실온에 数時間放置
後 5℃에 變貪한 冷蔵庫에 넣어 48時間 保存
하였다.

培养方法

保存卵子的 發生能 培養方法에 準하여 檢
查하였다. 培養液으로서 家兎卵子의 良好한
成績을 얻고 있는 同種血清을 使用하였다. (3),
(11,12)

保存한 卵子는 室温에서 鞭鞭이 바로 顯微
鏡으로 形態을 觀察하여 그 뒤 37℃에 保存한
家兎血清가 들어있는 Share型의 培養血清
加入시 37℃, CO25%의 條件의 培養器로 48時
間培養하였다. 培養後顯微鏡検査로 Morula以上
으로 發達한 卵子를 發生能이 있던 卵子로
判断하였다.

実験成績 및 考察

TC 199를 basic storage media로 하여 家兎
卵子의 低温保存이 可能한가를 檢討한 結果
Table 1과 같은 成績을 얻었다.

Table 1에서 보는 바와 같이 TC199만으로
保存한 卵子는 其의 發生率이 31%만 낮은
結果를 나타 냈으나 TC199에 家兎血清을 添
加한 경우에는 發生率이 80~100%이었으며 比
較하기 前에서는 血清, 生理的食塩水 또
는 血清 +生理的食塩水의 發生率과 同等하거
나 그보다 좋은 成績을 얻었다.

TC 199에 添加하는 血清量은 20%이상이면
特別히 發生率은 必要치 않고 輸지나처로
問題는 안된다.

一般的으로 卵子를 培養할때 TCC199는 單
獨으로 使用하는것 보다 家兎血清 또는 牛血
清을 添加하는 편이 좋다는 것이 알려져 있으

<table>
<thead>
<tr>
<th>Storage medium</th>
<th>No. of ova</th>
<th>% normal cleavage</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC 199</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>TC 199 + Serum(4:1)</td>
<td>15</td>
<td>87</td>
</tr>
<tr>
<td>TC 199 + Serum(3:2)</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>TC 199 + Serum(2:3)</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>TC 199 + Serum(1:4)</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Serum</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>Saline</td>
<td>12</td>
<td>75</td>
</tr>
<tr>
<td>Serum + Saline(1:1)</td>
<td>12</td>
<td>83</td>
</tr>
</tbody>
</table>

Fig. 2. Rabbit 16-cell ovum after storage at 5℃ for 48 hrs.
摘 要

TC199 Medium를 Bas에 여러 농의 家兎 血清을 添加하여 家兎卵子의 低温保存를 試験한 결과 TC199單獨으로 5°C에 48時間 保存한 16細胞卵子의 培養後의 發生率 31%에 대하여 TC199에 血清(20〜80%)을 添加했을 때의 發生率 80〜100%라는 좋은 成績을 얻었다.

 더욱이 比較血清단으로 生理的食塩水 血清과 生理的食塩水 1:1의 Medium로 保存했을 때 이 發生率는 100, 75, 및 83% 이었다. 이는 結果에서 TC199를 保存液으로 使用했을 때에는 家兎血清의 添加가 必要하다는 것이 明確되었다.

引用文献

10. 石島芳郎・伊藤雅夫・田畑弘 1969. PMSによる家児の過排卵誘起にすける エストロゲン併用の効果 (その2)家畜繁殖誌 15:109-111
Storage of Rabbit Ova in 199 Media at 5°C

C. G. Jeon* Yosiro. Isijima*

<Dept. of Animal Husbandry, College of Agriculture>
<*Tokyo Agricultural College>

Summary

Fertilized rabbit ova at 16-cell stage kept in TC 199, TC 199,* rabbit serum (4:1, 3:2, 2:3 and 1:4), rabbit serum, saline and serum + saline (1:1) were stored at 5°C for 48 hours. They were then cultured at 37°C for 48 hours to determine their viability. The percentage of ova survived in each storage media was 31, 87, 100, 80, 100, 75 and 83%, respectively.