SUMMARY

This study was carried out in order to provide the basic data necessary to develop the effective and desirable cooking method on large scale for investigating the physical characteristics of cooked rices and studying optimum cooking conditions by pressure in kettle cooking rices. Milyang-15, local Japonica type and Milyang-23, high yielding Indica type major varieties cultivated in Korea were used as cooking sample after polishing 70% and 90% respectively, and the results obtained are summarized as follows.

1. The average moisture content of cooked rice by open kettle and pressure kettle method in typical households were 65.17% and 64.52%, respectively.

2. In water absorption capacity of rice grain Milyang-23 was 4.5% higher than Milyang-15, and maximum water content after absorption in Milyang-23 was 29.14%.

3. The expansion volume of cooked rice was changed proportionally by water absorption, heating temperature and time, and maximum expansion-volume of cooked rice was 3.2 times greater than rice grain.

4. The gelatinization degree of cooked rice intensively concerning in hardness of rice grain was increased as water-to-rice ratio, heating temperature and time increased, and it was 0.44 in Milyang-23 and 0.64 in Milyang-15 under the optimum cooking conditions as 160% water-to-rice ratio, 0.2kg/cm² cooking pressure and 25 minutes cooking time.

5. The hardness of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 2.35kg/wt in 90% polished Milyang-23 and 2.0kg/wt in 90 polished Milyang-15 under optimum cooking conditions.

For maintaining the same level of hardness of cooking rice Milyang-23 required 25% much more water than Milyang-15.

6. The elasticity of cooked rice was changed proportionally by water-to-rice ratio, heating
temperature and time, and it appeared 19.2mm and 15.7mm in 90% polished Milyang-15 and Milyang-23 respectively.

7. The gumminess of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 60 and 73 in 90% polished Milyang-23 and Milyang-15, respectively.

8. The optimum cooking time on different pressure in kettle took 25 minutes at 0.2kg/cm², 20 minutes at 0.4kg/cm², 15 minutes at 0.6kg/cm² and 10 minutes at 0.8kg/cm².

緒 言

炊飯米에 대한 食味의 評価는 主要 官能検査법에 依하 主観的으로 優劣되어 왔으나 近래에 이르러서是 品質의 指標가 되는 理化学的特性을 利用한 客観的 判定基準이 널리 実行되고 있다.12,16

鴨沼 등은 食味의 難合評価에 가장 有効한 要因을 検討한結果 米飯의 粘弾性, 加熱吸湿率, 海藻容積, amylogram에서의 糊化温度 및 破壊 (break down) 等의 여섯 가지로서 食味의 70%를 推定할 수도 있다고 報告하였다. 最近에는 食品의 品質을 評価하는 方法의 하나로서 組織測定計 (tertiometer)를 使用하여 製品의 品質管理, 製造工程의 改善 및 新製品의 開発等에 関한基礎研究가 遂行되어지고 있으며. 24,25 特히 組織測定計에 依한 米飯的 物性에 関한 몇몇의 報告가 있다. 19,30

香里 등은 같은 量의 水を 加水하여 炊飯한 後 Indica型의 統一米가 Japonica型의 種興米보다 硬度가 20%나 높다고 指摘하였고, 타다13은 Japonica型인 Aikabareを 5分, 7분, 9分로 糊精하여 炊飯한 것을 組織測定計를 使用하여 硬度를 推定한結果 9分, 7分, 5分順으로 増加하고, 又한 炊飯硬度가 80%으로 減少하였다고 報告하였다.

山野 등은 炊飯後 時間의 經過에 따라 硬度를 推定하여 炊飯米의 老化度를 나아내는데, Indica型이 Japonica型보다 老化度가 높다고 하였다.

久保 등은 Indica型の 米と Japonica型の 米에 對한 老化 및 炊飯速度を 比較한 実験에서, 水化速度는 時間의 平方根에 比例하고, 擴散係數 (diffusion coefficient)는 Arrhenius 方程式에 따르며 Indica型의 擴散係數는 5.853×10⁻¹³ exp (−5.700/Rt). Japonica型は 3.51×10⁻¹⁴exp (-400/Rt)이었다고 報告하였으며, 炊飯速度는 Indica型が Japonica型 보다는 빠르고 90〜100℃에 서 炊飯 活性에 의하는 Indica型 米 가 Japonica型 米 보다 少ない다고 하였는데, 그 외에도 이와 類似한 研究가 探索され 바 있다. 20,28 大量 炊飯を 迅速히 하는 方法에 関하여 最近에 美國等에서 研究가 行われている 것으로 これ 8, 23 特히 Ozei 등23의 報告에 따르면 白米を 30% 程度 水化させ기 까다를 20분에서 8〜10分程度 加熱하여 水分含量を 60〜70%로 한 다음 1〜2分間 동안 차가운 水に 置き 冷却後 140℃ 空気を 乾燥시켜 水分含量を 8〜14%로 하였고 組織の 空間が 増大し 吹き 乾燥시 水化力가 増大되어 迅速히 炊飯할 수 있다고 하였다. Campher8는 70% 水分含縮を 白米を 糊化시켜 이들을 放冷시킨 다음 乾燥시킨 水分含量を 0.8〜2.2kg/cm²의 低い 蒸圧力으로 迅速히 炊飯하는 方法을 報告하고 있다.

一般的으로 炊飯米의 物理的 特性는 加水率, 水の PH, 炊飯하기 前의 水化状態, 時間, 温度, 含量, 燃料 및 炊飯後의 保存状態 等에 따라 影響을 받는다고 하였다. 19

特に, 一日の 主食を 炊飯する 우리 나라에서는 食에 對한 物理의 性状에 따라 炊飯を 優劣하였다. 実際에는 一日の 主食を 炊飯する 나는 炊飯に 對한 物理的 性状에 따라 炊飯を 優劣하였다. 実際には 一日の 主食を 炊飯する 나는 炊飯に 對한 物理的 性状에 따라 炊飯を 優劣하였다.
생 15호와 밀양 23호를 7분씩, 9분씩으로 각각 고형한 밤을 부과 계로 하여 가압하에서 실험하였다. 이때에 가압량, 가압 시간, 가압 횟수 등을 달리 하였음을 음

5. 치환도 (G) 측정
요오드모르모법에 20분에 임시로 범주에 50
밀로 다가 가압 세제를 잘 분산시킨 후, 4℃의
shaking water bath (130 strokes/min)에서 2 시간
동안 가압해 시켜 출시된 가용성 휘분을 1,500rpm
에서 5분간 침대영 분리하였다. 이때 얻은
上澄液을 보스로스코프에 취한 후 0.1%의
물로 0.5ml로 침림 후 100ml로 잘 섞고 5분
후에 spectrophotometer (Hitachi 社) 630مμ에서
광도를 측정하였다.

6. 노화의 성질
노화 시스템에 눈금을 이용하여 원목의 성질
에 대한 노화의 성질을 분석하여 높이 백마로
인식하였다.

7. 노화의 성질
Instron 카드. 제품에 만능성 테스트기 Universal
texturometer)를 사용하였으며, 사용 조건은 Table 1과 같다.

<table>
<thead>
<tr>
<th>Items</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample height</td>
<td>20±/mm for bulk</td>
</tr>
<tr>
<td>close head speed</td>
<td>20mm/min</td>
</tr>
<tr>
<td>chart speed</td>
<td>50mm/min</td>
</tr>
<tr>
<td>clearance</td>
<td>2mm</td>
</tr>
<tr>
<td>plunger speed</td>
<td>18mm lucite</td>
</tr>
<tr>
<td>bite speed</td>
<td>12cycle/min</td>
</tr>
<tr>
<td>voltage</td>
<td>1 V</td>
</tr>
</tbody>
</table>

8. 실증
비례법 (rating method)에 의하여 남학생 5명, 노화의 성질을 요약하여 노화의 성질
마, 맛, 식, 음료, 평균 등에 대하여 측정하여 평균값을 비교하였다.

결과 및 고찰
1) 행정에 따른 노화의 성질

생산성으로 250가지로 선택하여 변압 및 가압층을
사용한 달걀의 수분분량을 측정한 결과는 그림 1에서 나타나 바와 같이, 즉 달걀의 수분분량은 60~70%의 범위에 있었으며, 약 8%로 사용한 달걀의 수분분량은 약 8%보다 1~2% 낮았으며, 전체 평균 수분분량은 65% 정도였다.

2) 試料米의 物理化學的 性質
본 실험에서 사용한 밀양15호 및 밀양23호의 物
理的 性質 및 一般成分 組成은 表2와 같다. 즉, 100개의 밀양 무게는 밀양 15호의 9.7%, 밀양 23호의 9.7%로 보다 0.06g이 적었으며, 밀양 23호의 9.7% 보다도 0.11g이 적었다. 반
은 밀양 23호가 6.13mm으로서 밀양 15호 보다 1.4mm
가 더 적었고, 무게는 약간 적었다.
一般成分組成에서 蛋白質은 밀양23호가 8.30%
로 밀양15호에 비해 1%가 밀었으나 그 외의 成
分은 밀양15호가 적었다. 그리고 纖維質 및
灰分은 7%과 밀양 9%에서 보다 낮았다.

<table>
<thead>
<tr>
<th>Varieties</th>
<th>100 Kernel weights (g)</th>
<th>Grain length (mm)</th>
<th>Grain breadth (mm)</th>
<th>Moisture (%)</th>
<th>Crude protein (%)</th>
<th>Crude fat (%)</th>
<th>Total sugar (%)</th>
<th>Crude fiber (%)</th>
<th>Ash (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILYANG-15, 70% polished</td>
<td>2.05</td>
<td>4.84</td>
<td>2.85</td>
<td>13.06</td>
<td>7.30</td>
<td>1.35</td>
<td>76.29</td>
<td>0.40</td>
<td>0.70</td>
</tr>
<tr>
<td>MILYANG-15, 90% polished</td>
<td>1.89</td>
<td>4.74</td>
<td>2.77</td>
<td>13.35</td>
<td>7.14</td>
<td>0.99</td>
<td>76.75</td>
<td>0.33</td>
<td>0.54</td>
</tr>
<tr>
<td>MILYANG-23, 70% polished</td>
<td>2.14</td>
<td>6.13</td>
<td>2.36</td>
<td>13.08</td>
<td>8.30</td>
<td>1.10</td>
<td>75.76</td>
<td>0.24</td>
<td>0.62</td>
</tr>
<tr>
<td>MILYANG-23, 90% polished</td>
<td>2.10</td>
<td>6.03</td>
<td>2.25</td>
<td>13.68</td>
<td>8.15</td>
<td>1.03</td>
<td>75.75</td>
<td>0.15</td>
<td>0.44</td>
</tr>
<tr>
<td>Average</td>
<td>2.04</td>
<td>5.43</td>
<td>2.55</td>
<td>13.29</td>
<td>7.72</td>
<td>1.12</td>
<td>76.39</td>
<td>0.28</td>
<td>0.59</td>
</tr>
</tbody>
</table>

3) 水化力 測定
本 実験에서 使用한 試料는 上述한 바와 같이
10℃의 水中에서 水化力を 測定하였으며, 結果는
그림 2와 같다.
그림 2에서와 같이 Indica型 밀양23호가 Japonica型 밀양15호보다 4.5% 정도 높게 나타났고, 最大로
吸収할 수 있는 水分含量은 10℃에서 60분
後에 약 30% 程度였으며, 検別로는 두 品種 모두
9%과 밀양 7%과 보다 약간 높은 現象을 나타
냈다. 이로, 試料의 성질은 久保ら(19)이 報告한 바와 같이
Indica型의 品種인 Japonica型 品種보다 Amylose
含量이 많아 쉽게 물을 吸収할 수 있다는 報告와
一致함을 보여주었다.

Fig. 1. Distribution of moisture content of cooked rice on cooker.

Fig. 2. Water absorption during hydration on rice varieties.
*M-23, 90% represents the 90% polished Milyang-23
4) 飯飯條件에 따른 米飯의 特性

1. 加水率

두가지 品種을 7分搗과 9分搗로 搗精하여 알루미늄관에 10kg씩 넣고 加水率에 따른 米飯米의 膨脹容積과 彈力性을 測定한 結果는 表3과 같다.

Table 3. Effect of the water-to-rice ratio on the volume and elasticity of the cooked rice at 0.2kg/cm² for 25 minutes.

<table>
<thead>
<tr>
<th>W/R (%)</th>
<th>Volume (%)</th>
<th>Elasticity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 120 160 200</td>
<td>80 120 160 200</td>
</tr>
<tr>
<td>M-15, 70%</td>
<td>212 258 290 323</td>
<td>11.1 13.0 18.5 18.4</td>
</tr>
<tr>
<td>M-15, 90%</td>
<td>220 254 315 339</td>
<td>12.5 14.9 19.2 19.1</td>
</tr>
<tr>
<td>M-23, 70%</td>
<td>243 262 295 314</td>
<td>7.1 10.0 13.5 13.3</td>
</tr>
<tr>
<td>M-23, 90%</td>
<td>250 263 312 327</td>
<td>9.0 12.0 15.7 15.5</td>
</tr>
</tbody>
</table>

膨脹容積에 있어서는 水分含量의 增加에 따라 比例하였고 品種別 및 搗精度別로 큰 差異를 나타내지 않았으나 最大容積은 搗飯前의 容積에 비해 3～3.5倍가 增加되었다. 彈力性 (elasticity)은 外部의 形態를 反映하는 物性로 除去되었을 때 원래의 狀態로 복원하는 程度를 나타내는 데 24일 一般的으로 加水率가 增加함에 따라 增加되는 趨向이며 200%以上の 加水率에서는 오히려 彈力性이 減少되는 趨向을 보였다.

品種別로 보면 amylose 含量이 20～22%인 밀양15호가 amylose 含量이 25～26%인 밀양23호 보다 20～30% 높게 나타났고 搗精別로는 9分搗이 7分搗이 보다 크게 나타났는데 이러한 趨向은 澱粉의 構成成分 즉 amylose와 amylopectin 含量의 比率에 密接한 關係가 있는 것으로 想定되다. 飯飯 실과 加水率의 比率은 加熱 方法과 함께 매우 重要한 것으로 米飯의 物性에 크게 影響을 미친는데, 즉 그림3에서 보는 바와 같이 加水率은 米飯의 水分含量에 直接의 影響을 미치고 있으며, 品種의 品種 및 搗精度에 따라서는 그 構成이 크게 달라질 수 있다고 鳥居等(16)은 報告하였다.

밀양15호와 밀양23호를 比較해 보면 加水率 160%以下에서는 밀양23호가 3～4%程度 높은 水分含量을 보였으며, 160%以上の 加水率에서는

Fig. 3. Water absorption on rice varieties in cooking at 0.2 kg/cm² for 25 minutes.

Fig. 4. Effect of water to rice ratio on gelatinization degree of cooked rice at 0.2kg/cm² for 25 minutes.
면발의 연장은 그림 5에서 보는 바와 같이 가수분에 따라 상당한 영향을 받았는데 80% 가수분에서는 밀양15호보다 약 30% 정도나 높은 값을 나타냈으며, 가수분이 많아질수록 점차적으로 차 이가 없었다. 특히 가수분의 증가로 연장은 적게 되었으며, 또한 밀양23호가 밀양15호보다 더 많은 수분을 증가시켜도 연장은 증가한 것은 amylose 함량에 기인되는 것으로 보이며 7분 미숙미가 9 분 미숙미보다 연장이 적은 것은 섬유산, 용해성의 함량이 9분 미숙미보다 많기 때문인 것으로 생각되어진다.

![Fig. 5. Effect of water-to-rice ratio on the hardness for cooked rice at 0.2 kg/cm² for 25 minutes.](image)

gumminess는 기대치 상태로 저장하는데 의료는 유형으로서 그림 6에서와 같이 80% 가수분에서는 거의 비슷한 연장들을 보였으며, 발효도 변동은 7분 미숙미가 9분 미숙미보다 높게 나타났다. 즉 가수분이 증가할수록 연장이 비슷한 연장으로 증가하였고, 160% 가수분에서 연장값을 보여주었는데, 이러한 결과를 바탕으로 단일면발 연장과 연장은 연장의 가장 적절한 연장과 연장으로 생각되어진다.

![Fig. 6. Effect of water-to-rice ratio on the gumminess for cooked rice at 0.2 kg/cm² for 25 minutes.](image)

2. 연장시간

발 10g에 대해 15배 160% 가수분 양은 0.2kg/cm² 압력 하에서 5~30분간 연장한 후 연장의 변동성과 연장의 유량을 확인한 결과는 표 4와 같다.

| Table 4. Effect of the various cooking time on the volume and elasticity of the cooking rice at 0.2kg/cm² in water-to-rice ratio 160 % |
|---------------------------------|-----------------|-----------------|
| Cooking time (min) | Volume (%) | Elasticity (mm) |
| Varieties | 5 | 15 | 25 | 30 | 5 | 15 | 25 | 30 |
| M-15, 70% | 226 | 282 | 290 | 291 | 10.5 | 14.0 | 18.5 | 18.6 |
| M-15, 90% | 227 | 283 | 315 | 316 | 12.0 | 16.0 | 19.2 | 19.3 |
| M-23, 70% | 237 | 286 | 295 | 295 | 7.0 | 11.8 | 14.5 | 14.8 |
| M-23, 90% | 240 | 289 | 312 | 313 | 8.0 | 14.5 | 15.7 | 15.9 |

표 4에서 보는 것처럼 연장의 유량과 연장의 유량은 두 종류 모두 연장시간에 연장함에 따라 비례적으로 연장하였으나 25분 이후에는 거의 일정하였으며 최대유량은 2.9~3.15배가 있다. 연장유량은 밀양15호가 밀양23호보다 40% 정도 높게 나타났고 9분 미숙미가 7분 미숙미보다 20% 정도 높은 편향을 보였다. 연장시간에 따른 연장의 수분을 보는 그림 7에서 보는 바와 같이 20분 이전에는 밀양 23호가 밀양15호보다 4~5% 정도 높은 수분을 보였으나 25분이 이후에는 거의 비슷한 연장형을 보았다. 또한 0.2kg/cm² 압력 하에서 25분간 연장은의 두 종류 모두 최대값에 가까운 67%의 수분을 보여주었으며, 따라서 더 이상 연장시간을 연장하여도 수분은 증가하지 않음을 알 수 있었다.

![Fig. 7 Water absorption on rice varieties in cooking at 0.2 kg/cm².](image)
박피 시간에 따른 반도는 그림 8에서 보는 바와 같이 5~15분 사이에서 급속히 증가하였고 그 이후에는 비교적 완만히 증가하는 경향을 보였으며, 특히 희석도 이상 밀양15호가 밀양23호보다 50~60% 높게 나타났고, 콩에 희석도 이상은 9분째에 7분째보다 20%정도 높게 나타났다.

Fig. 8 Effect of various cooking time on the gelatinization degree of cooked rice by iodine method at 0.2 kg/cm².

고도와 gumminess는 그림 9와 10과 같이 하여서는 5분에 쌀을かり는 속도를 내세워 밀양23호가 밀양15호보다 40~50% 높은 값을 보였으나, 25분에 쌀을ари는 속도에는 거의 비슷한 경향을 나타내었다.

gumminess는 15분까지는 고도와 비슷한 정도로 감소하였으나, 15분 이후에는 밀양15호가 밀양23호보다 50% 높은 값을 보였는데 이는 밀양15호가 밀양23호보다 amylpectin의 함유량이 4~5% 높기 때문에 쌀의 희석성이 강해서 gumminess에 영향을 미친 것으로 생각되며, 이는 전문가의 결과와도 일치하고 있다.

Fig. 9 Effect of cooking time on the hardness for cooked rice at 0.2 kg/cm².

Fig. 10 Effect of cooking time on the gumminess for cooked rice at 0.2 kg/cm².

3. 밥의 희석

압력 10g에 대해 16ml에 안정하게 시험하고 0.2
~ 0.8kg/cm²의 밥소에 5분 동안 판 빌미 방문의 희석, 희석성 및 희석성에 영향을 미친 결과는 다음과 같다.

Table 5. Effect of the various cooking pressure on the volume and elasticity of the cooking rice in water-to-rice ratio 160% for 5 minutes.

<table>
<thead>
<tr>
<th>Cooking pressure (kg/cm²)</th>
<th>Volume (%)</th>
<th>Elasticity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varieties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-15, 70%</td>
<td>226 226 298 301</td>
<td>10.5 14.0 17.0 18.5</td>
</tr>
<tr>
<td>M-15, 90%</td>
<td>227 271 305 307</td>
<td>12.0 15.4 18.5 19.0</td>
</tr>
<tr>
<td>M-23, 70%</td>
<td>237 275 280 281</td>
<td>7.0 10.4 14.8 16.0</td>
</tr>
<tr>
<td>M-23, 90%</td>
<td>240 283 319 321</td>
<td>8.0 11.5 15.2 17.0</td>
</tr>
</tbody>
</table>

비교로 밥의 희석이 높을수록 증가하였으며, 0.8kg/cm²의 밥소에서 5분에 온도, 밥소를 하는 속도는 25분에 밥소를 하는 수치가 비슷한 결과를 나타내었으며, 희석도 이상은 동일한 방법에 비해 큰 차이가 보이지 않았다. 밥의 희석도는 밥소가 높을수록 증가하였으며, 밥의 희학도는 밥소가 높을수록 증가하였다.

이러한 결과에 대해 그 원인을 분석하여 보면
높은 압력에서는 보통의 짧은 시간에 완전한 뿌리가 없으므로, 고압에서 오랫동안 뿌리한 후 보다 조직이 더 잘 형성되어 뿌리의 성장이 증가되고 있었으며 이러한 점으로 볼 때 뿌리의 절단이 빨라지게 되어, 금이 좋은 Indica 아종은 압력에 훨씬 더 적응하여 적당한 성장을 보였으며, 이로 인해 그에 따라 압력의 개선이 가능할 것으로 생각되었다.

그림 11 및 12에서 보는 바와 같이 급변량이, 구분도는 압력의 증가에 따라, 구분도가 증가하였고, 구분도 및 구분도 역시 그림 13 및 14에서 보는 바와 같이 압력의 증가에 따라, 구분도가 증가하는 경향을 보였다.

그런데 0.8kg/cm² 압력에서 5분간 압력한 시설의 구분도는 동일한 조건으로, 0.2kg/cm² 압력에서 25분간 압력한 시설의 구분도가 근사할 수 있었다.

즉, 0.8kg/cm² 압력에서 압력한 후 압력이 짧은 시간에 급변량이 빨라지게 되어, 금이 좋은 Indica 아종의 압력에 훨씬 더 적응하여 적당한 성장을 보였으며, 이로 인해 그에 따라 압력의 개선이 가능할 것으로 본다.

Fig. 11 Water absorption on rice varieties in cooking for 5 minutes.

Fig. 12 Effect of various cooking pressure on gelatinization degree of cooked rice for 5 minutes.

Fig. 13 Effect of cooking pressure on the hardness of cooked rice for 5 minutes.

Fig. 14 Effect of cooking pressure on the gumminess of cooked rice for 5 minutes.

5) 평가

밀양15호와 밀양23호의 7분동안 압력 9분동안 압력 160%의 증가로 0.2kg/cm² 압력에서 25분간 압력한 밀양 4종의 밀양에 대해, 여학생 5명, 여학생 5명으로 하여금 밀양의 맛, 향, 기색, 조직 등에 대해 평가한 결과로 표 6의 결과와 같다.

<table>
<thead>
<tr>
<th>Table 6 Panel test of cooked rice at 0.2kg/cm² for 25 minutes in water-to-rice ratio 160%</th>
<th>Varieties</th>
<th>M-23, 70%</th>
<th>M-23, 90%</th>
<th>M-15, 70%</th>
<th>M-15, 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Items</td>
<td>(160%)</td>
<td>(160%)</td>
<td>(160%)</td>
<td>(160%)</td>
<td></td>
</tr>
<tr>
<td>Taste</td>
<td>3.1</td>
<td>4.1</td>
<td>4.5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Flavor</td>
<td>3.0</td>
<td>3.9</td>
<td>4.2</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>3.3</td>
<td>4.2</td>
<td>4.7</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td>Texture</td>
<td>3.4</td>
<td>4.3</td>
<td>4.8</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>3.2</td>
<td>4.1</td>
<td>4.6</td>
<td>4.8</td>
<td></td>
</tr>
</tbody>
</table>
表 6 で보는 바와 같이 말, 향기, 색, 조직
면에서 밀양 15호 9 분 알코 를 160% 가수도에서
전한 것만이 평균 4.8% 정도로 가장 좋았고, 밀양 15
호 7 분 알코 를 160% 가수도에서 전한 것이
4.6%로 그 다음이었다. 따라서 투성 단계의
이 반 밀osg의 습성도 주관적 금지험에
적절한 습성과 가장 일치하는 것은
하여 털의 강이나 리스도 웅하되에는,
강도가 높고 리스도가 적은 것은
저작에 적당히 좋은 것으로 평가되었으며,
또한 밀양 15호와 밀양 23호를 비교할 때 160% 가수도
로 전한 경우 거의 같은 수분량, 강도,
gumminness 를 갖고 있어도 리스도가 밀양 23호에
반하여 15호보다 빨리 ere되므로 관애적으로
비교할 때 수분량
을 판전서할 것으로 생각되어진다.

이의 실험 결 과에서 보이던 일반
가정에서의 밀osg의 수분량은 65%였으며 10℃에서
반의 수분량을 측정한 결과는 밀양 23호가 밀양 15호 보
다 4.5% 높았고 60%의 수분량을 10% 가장
가정에 실내하였으며 반의 전한 침구에 30~60 분
간 수분량을 침구 후 전한하는 것이 좋은 것으로 본다.

조직 추성하도 밀osg의 습성도를 측정한 결과, 전한
할 때 140~160% 가수도가 가장 적당한 것으로
발견되었으며 또한 Indica형의 밀양 23호는
Japonica의 밀양 15호에 비해 더 10~20% 가수도
가 단 한 결과를 나타내었다. 압력보다 최적
수분량은 0.2kg/cm²에서 25분, 0.4kg/cm²에서
20분, 0.6kg/cm²에서 15분, 0.8kg/cm²에서는 10
분간 전한하는 것이 좋은 것으로 나타났다.

그리고 0.8kg/cm²의 높은 압력에서 전한 밀osg
이 가장 높은 털의 강이나 리스도가 나타내고 있으므로 고려할
때 털의 강이나 리스도는 Indica형의 밀osg의 전한에서도
반용할 수 있을 것으로 생각되어진다.

결과의 결과는 전송을 측정하고 전에 알리기
때문에 많은 변연시에 적합하기는 많은, 문제
점이 있을 것으로 생각되어지나, 앞으로 전한 시에
의 거부, 거부도, 열확산도, 활성 energy 등에
개하여 더 연구를 향후으로서 이를 보완할 수 있
을 것으로 생각된다.

本 研究은 밀양 15호의 가수도에
하여 밀양 23호가 밀양 15호 보다
平均 4.5% 높았으며, 밀양 23호의 가장
가정에 적당하여 최적 습성은
29.14%이었다.

2. 밀osg의 수분량은 밀양 15호로
비교하는 값 4.5% 높았으며, 밀양 15호의 수분량은
3. 밀osg의 수분량은 전한, 가수도 및
시간에 따라 비례하여 바뀌었고, 가장
간의 수분량은 웅대한

5. 밀osg의 수분량은 가수도, 가수도, 가수도의
전환에 따라 비례하여 바뀌었고, 최적 습성
밀양 23호 및 밀양 15호의 가수도는 각각 2.35
kg/ct, 2.0kg/ct었다. 또한 밀osg의 수분량은

6. 밀osg의 수분량은 가수도, 가수도, 가수도의
전환에 따라 비례하여 바뀌었고, 최적 습성
밀양 23호 9 분 알코 를 60이었으며, 밀양 15호 9 분 알코 를 73이었
다.

8. 압력의 최적의 전한,
전한 시간 160%
에서 밀양 15호 9 분 알코 를 0.2kg/cm²에서 25
분, 0.4kg/cm²에서 20분, 0.6kg/cm²에서 15분, 0.8kg/cm²에서
10분이었다.
引用文献

27. 岩崎哲郎, 竹生新治郎, 谷達雄. 1970. 高水分米を加熱した際の品質変化に関する研究, 日本食品工業学会誌, 17: 73～76.
29. 渡辺顕夫, 永澤信, 高分子物質添加に製造.
しなメソの粘弾性について。
日本食品科学会誌 5: 469-470.
30. 金・張：加圧炊飯時米飯の物性変化と関係研究。
統一米・振興米の炊飯嗜好特性に関する研究。
韓國食品科學會誌 7: 212-219.
1975.