Identification of Korean Native Goat Meat using DNA Analysis

B. C. Sang* · S. H. Lee* · S. H. Ryoo* · K. W. Seo* · S. W. Han and S. K. Kim**

SUMMARY

This study was carried out to analyze the genetic polymorphisms of genomic DNA of blood and meat for conservation of the genetic resources and genetic improvement of Korean Native goat. The genetic identification between Korean Native goat and imported goat was examined using RAPD(random amplified polymorphisms DNAs) analysis with 30 Korean Native goat, 10 hybrid, 10 imported goat, 10 Korean native goat meat and 10 imported goat meat. The results obtained from this study were summarized as follows:

1. Genomic DNA from Korean native goat, hybrid and imported goat could be obtained above about 23kb size using 0.5% agarose gel electrophoresis and the ratio of optical density at 260nm to that at 280nm was between 1.7 and 2.0 using UV spectrophotometer instrument.

2. In the results of the gene identification between Korean Native goat and hybrid, and imported goat using RAPD methods with random primer of 110 kinds, only Korean native goat showed a specific band at about 369bp using a random primer OPO-19 (5’-CAA ACG TCG G-3’), but imported goat and hybrid not showed.

3. Also, in the results of the gene identification between Korean Native goat meat and imported goat meat using RAPD methods with random primer, Korean native goat only showed a specific band at about 369bp using a random primer No. 19(5’-CAA ACG TCG G-3’), but imported goat not showed.
서 언

재래산양은 우리 나라의 대표적인 재래가축의 하나로서 그 유전자원의 보존 및 활용은 우리 나
라의 축산업에 귀중한 유전자원이 될 수 있을 것
으로 사료된다. 재래 산양육은 전통의 고단백 건
강식품으로 농약이나 화학제로부터 오염되지 않
은 식품으로 국민소득에 증가하면서 많은 소비자
의 요구에 의하여 수육두수의 증가는 물론 가격
의 상승으로 농가의 중요한 위기의 가축으로 급
부상하게 되었다. 그러나 재래산양의 유전적 개
량에 대한 교육중 및 산육능력 개량에 대하여는
1970년대 유전자통계학 연구가 축산시험장에서
 일부 연구되었다. 그 이후에는 이에 대한 연구
는 거의 찾아볼 수 없으며 더욱이 재래산양의 보
존 및 개량을 위한 유유 및 혈액단백질의 유전적
다형성 현상이나 혈액 및 고기의 genomic DNA의
유전자조직(DNA fingerprint, DFP)에 대한
분자유전학적 연구는 거의 없는 실정이다.

재래산양은 우리 나라의 고유한 재래가축으로
서 국민의 보건 및 건강식품로서 그 수요가 해
마다 급증하고 있으며 앞으로 수출 유망 축종으
로서 전망이 부적합한 재래산양의 유전자원의
보존 및 개량에 대한 연구는 중요하고 시급한 과
제라고 생각되며 더욱이 최근에 선진국에서 운
용이 시도되고 있는 가축의 유전자원 보존 및 개
량분야에 이용이 가능한 genomic DNA의 분자유
전학적 분석과 혈액이나 고기에서 추출한 genomic
DNA의 유전자조직 분석에 대한 연구는 시급히
이루어져야 할 것으로 사료된다.

DNA의 유전적 다형성 분석에 대한 연구는 영
국 Leicester 대학의 Jefferys 등(3) DNA probe
등에 의한 유전자 조문(DNA fingerprinting, DFP)
법을 개발하였으며, Gill 등(1)은 가축의 개체식별
및 친척감별을 위한 유용한 도구로서 이용될 수
있다고 보고하였다. William 등(6)은 genomic
DNA의 보다 효율적인 다형성 분석을 위하여
PCR(polymerase chain reaction)과 임의의 5기사
열의 primer을 이용한 random DNA 염기서열
의 중복에 기초를 둔 새로운 DNA 분석방법을
보고하였으며, Waugh와 Powell(5)등은 PCR기법
을 이용한 DNA의 다형성 분석을 실시하였으며,
Guthrie 등(2)은 PCR 기술을 접속시킨 RAPD에
의한 유전자 조문을 집단유전학 연구에 응용이
가능하다고 보고하였다. 국내의 가축 유전자원
에 대한 연구 보고로는 이 동(8)이 혈산 판별법
에 의한 한우의 판별에 관한 연구를 보고하였으
며, 조 등(9)이 한우 특이적 RAPD 표지인자의
개발, 이 등7가 RAPD기법을 이용한 소고기의
품종 구분에 관한 연구를 보고하였다.

따라서 본 연구의 목적은 재래산양. 수입산양,
교잡종의 혈액과 재래 산양육 및 수입 산양육의
PCR를 이용한 RAPD기법을 이용하여 genomic
DNA의 유전적 다형(genetic polymorphism)을
분석하여 이들의 유전적 표지(genetic marker)에
의한 산양접종의 유전자조합과, 순수재래산
양의 유전자감각 및 재래 산양육과 수입 산양육
의 유전자감각에 의하여 한국재래산양의 유전자
보존 등 재래산양의 유전적 능력을 개량에 필요한
기초 및 응용자료를 얻고자 하는데 있다.

재료 및 방법

1. 공시 재료

유전자감각에 의한 재래산양의 유전자 판별을
위한 공시 재료는 충남 당진에서 사육중인 순수
재래산양 30두와 재래산양 교잡중 10두. 그리고
강원도 화천에서 사육중인 수입산양 10두를 이용
하였으며, 재래 산양육과 수입 산양육의 판별을
위한 공시 사료는 천안 흑염소 협동조합에서 도
살한 재래 산양육 10두와 뉴질랜드에서 도입된
수입 산양육 10두를 이용하였다.

2. Genomic DNA의 추출

혈액과 조직으로부터 genomic DNA분리는
Maniatis(4) 등과 Gibco BRL manual의 방법에
따라 추출하였는데 extraction solution 처리전
혈액의 경우는 진공 채혈관에 재취된 혈액 10ml
을 3,000rpm에서 15분간 원심분리하여 백혈구
(buffy coat)를 얻은 후 PBS solution(NaCl, KCl,
Na2HPO4, KH2PO4)를 혼합하여, 불순물을 제거하
였고, 조직의 경우는 liquid nitrogen을 이용하여
미세하게 분쇄한 후 다음 PBS를 처리하여 불순
물을 제거한 후 다음 단계를 실시하였다. PBS용
액에 의해 불순물이 제거된 응용은 extraction
solution(10mM Tris-Cl, 0.1M EDTA, 0.5% SDS, 20μg/ml Pancreatic RNase, Proteinase K)으로 처리하여 cell을 용해시킨 후, phenol을 처리하여 protein을 변성시키고, 100% EtOH을 처리하여 DNA를 청정시켰다. 그리고 70% EtOH을 이용하여 추출된 DNA를 washing하고, 1X TE buffer로 DNA를 적정한 concentration으로 dilution한 후, 약 18~24시간간 실온에 방치한 후 -20°C에 보관하면서 template로 이용하였다.

3. Random primer
RAPD분석을 위해 사용된 random primer는 Operon Technologies, Inc.에서 제조된 10mer 길이의 110종류 random primer를 이용하여 DNA amplification을 수행하였다.

4. DNA amplification
Genomic DNA의 유전자 좌위의 중폭 반응을 위하여 GeneAmp PCR System 2400(Perkin Elmer Co.)을 이용하여 각각의 유전자 좌위를 amplification하였고, reaction mixture의 양은 한 sample당 25μl로 적정하였다. 이 solution에는 100mM Tris-Cl(pH 8.3), 50mM KCl, 1.5mM MgCl2, 0.001% gelatin, 100μM씩의 dATP, dTTP, dCTP, dGTP(Invitrogen Biotechnology, USA), 10pM primer, 약 25~50ng의 genomic DNA와 0.5unit의 Taq DNA polymerase(Korea Biotech., Inc.)가 포함되었다.
DNA의 중폭을 위한 온도조건은 변성 반응은 95°C에서 30초, primer부착온도는 33°C에서 30초, primer extension은 72°C에서 30초 실시하였으며 DNA 중폭을 위한 총 반복수는 약 40cycles로 DNA Thermal cycler에 programming하여 DNA를 중폭하였다.

5. Electrophoresis
산양의 품종간 유전적 다양성을 관리하기 위한 DNA 중폭 산물은 1.5% agarose gel에서 전기영동하였고, 전기영동의 조건은 120voltage에서 약 30분간 실시하였으며, 전기영동에 완료된 gel은 20μg/ml EtBr(etidium bromide)로 1분간 염색한 후 중류수를 이용하여 약 60분간 탈색하였고, 이 탈색된 gel은 UV illuminator상에서 Polaroid Camera로 사진을 현상하여 band pattern을 관찰하였으며, DNA size marker로는 1Kb ladder(Gibco BRL, USA)를 이용하였다.

결과 및 고찰

1. Genomic DNA의 전기영동 양상
산양의 품종별 genomic DNA의 band patterns을 보기 위해 Maniatis(4) 등과 Gibco BRL manual의 방법을 이용하여 산양이 혼합과 조작으로부터 추출한 genomic DNA의 band patterns은 Fig. 1에서 보는 바와 같이 분리된 genomic DNA를 0.5% agarose gel에서 전기영동한 후 EtBr(etidium bromide)로 염색하여 UV illuminator에서 DNA band patterns을 조사한 결과 모든 산양 품종에서 약 23kb이상의 크기를 가
진 genomic DNA가 단일 band로 나타난 것으로 보아 추출된 genomic DNA는 DNA apllication을 위해 template으로 이용할 수 있음을 알 수 있었다. M은 DNA size marker(λ DNA digested with Hind III marker)이며, lane 1 ～ 4는 재래산양, lane 5 ～ 8: 교잡종, lane 9 ～ 12: 수입산양. lane 13 ～ 16: 재래산양육 그리고 lane 17 ～ 19: 수입산양육의 genomic DNA band pattern이다. 한편, 정제된 DNA의 순도는 UV spectrophotometer를 이용하여 흉광도 A 260과 A 280의 비율로 측정한 결과, 그 비율이 1.75 ～ 2.10의 범위로 순도는 비교적 양호한 결과를 나타냈다.

2. 재래산양과 수입산양 및 교잡종의 다양성

순수 재래산양의 유전자원의 보존을 위한 재래산양과 재래산양 교잡종의 유전적 차이를 구분하기 위하여 재래산양과 재래산양 교잡종, 그리고 외국에서 수입되어 사용되고 있는 수입육용 산양의 형질로부터 추출한 genomic DNA를 각 품종당 무작위로 5개씩씩 혼합한 후 면자 DNA를 증폭하여 각 품종간의 DNA band patterns을 비교 분석하여 본 연구에서 사용하였던 110종류의 random primer중 1개의 random primer OPO-19에서 품종간의 차이를 보이는 band pattern을 형성하여 이 random primer를 품종의 구별에 유용한 marker로 선발한 후, 개체간 비교분석을 하였다. 여기에 선발된 random primer를 이용하여 재래산양, 재래산양 교잡종, 수입육용 산양의 genomic DNA의 개체간을 비교함으로써 이것이 품종 판별에 유용한 지를 확인하였다. Fig. 2(A)은 random primer OPO-19(5' - CAA ACG TCG G-3')를 이용하여 각 품종별 5개체를 혼합하여 증합효소 연쇄반응(PCR)을 한 DNA band pattern이며 여기서 lane 1은 재래산양의 band pattern이고 lane 2는 수입산양 그리고 lane 3은 교잡종의 band pattern이다. 또한 Fig. 2(B)는 random primer OPO-19를 이용하여 각 품종의 개체별 증합효소 연쇄반응된 DNA의 band pattern을 나타낸 것으로서 lane 1 ～ 3은 재래산양의 각 개체간 band pattern이고 lane 4 ～ 6은 수입산양의 band pattern 그리고 lane 6 ～ 9은 교잡종의 band pattern을 나타낸 것이다.

Fig. 2. Electrophoretic patterns of PCR product in Korean native goat, hybrid and imported goat. M : 1kb ladder size marker, (A) lane 1: Korean native goat, lane 2: imported goat, lane 3: hybrid, (B) lane 1 ～ 3: Korean native goat, lane 4 ～ 6: imported goat, lane 6 ～ 9: hybrid.
Fig. 2(A)에서 나타난 바와 같이 약 396bp에서 재래산양에서는band가 존재하지만, 수입산양과 교잡종에서는 존재하지 않는 band가 확인되어 각 품종간 band 차이가 인정되는 바 이 결과를 토대로 이들 품종간의 각 개체를 이용하여 PCR 중복한 후의 band pattern을 비교한 결과, Fig. 2(B)에서 보는 바와 같이 약 396bp에서 모든 재래산양에서는 band가 나타나나, 수입산양과 교잡종에서는 band가 나타나지 않았다. 이상의 결과를 종합하여 볼 때 이들 품종의 감별을 DNA의 다양성 분석에 의하여 손쉽게 구분할 수 있어 이 방법을 이용하면 순수 재래산양의 유전자원 보존 및 유지에 활용할 수 것으로 사료된다.

3. 재래산양육과 수입산양육의 DNA 다양성

산양육의 유동질서를 확립하기 위하여 순수 재래산양육과 외국에서 수입되는 산양육간의 유전적 차이를 규명하기 위하여 재래산양육과 뉴질랜드에서 수입된 산양육으로부터 추출된 각 5개체의 genomic DNA를 훈련한 genomic DNA를 template DNA로 이용하여 재래산양, 수입산양 및 교잡종의 혈액을 이용하여 품종구분에 유용할 것으로 판단되어지는 random primer OPO-19를 적용시켜 PCR 반응을 시킨 RAPD 결과는 Fig. 3(A)와 같이, M은 size marker(1kb ladder size marker)이고, lane 1: 재래산양육의 band pattern 그리고 lane 2는 수입산양육의 band pattern을 나타낸 것이며 각 품종의 개체별 RAPD 결과는 Fig. 3(B)에 나타낸 바와 같이 lane 1~3은 재래산양육의 band pattern이며 lane 4~6은 수입산양육의 band pattern을 표시한 것이다.

Fig. 2(A)에서 나타난 바와 같이 약 396bp에서 재래산양에서는 band가 존재하지만, 수입산양과 교잡종에서는 존재하지 않는 band가 확인되어 각 품종간 band 차이가 인정되는 바 이 결과를 토대로 이들 품종간의 각 개체를 이용하여 PCR 중복한 후의 band pattern을 비교한 결과, Fig. 2(B)에서 보는 바와 같이 약 396bp에서 모든 재래산양에서는 band가 나타나나, 수입산양과 교잡종에서는 band가 나타나지 않았다. 이상의 결과를 종합하여 볼 때 이들 품종의 감별을 DNA의 다양성 분석에 의하여 손쉽게 구분할 수 있어 이 방법을 이용하면 순수 재래산양의 유전자원 보존 및 유지에 활용할 수 것으로 사료된다.

Fig. 3(A)에서 보는 바와 같이 396bp에서와 같
이 재래 산양육에서는 band가 존재하나, 수입 산양육에서는 band가 관찰되지 않았으며, 이들 결과를 이용하여 재래 산양육과 수입 산양육의 각 개체를 비교한 Fig. 3(B)에서도 396bp에서 재래 산양육에서만 band가 검출되었다.

따라서 random primer No. 19를 이용하여 PCR를 실시한 결과, 보다 간편하고 빠른 시간내에 재래 산양육과 수입 산양육 DNA 수준에서 감별할 수 있음을 시사하였으며 이를 통하여 우리나라의 재래가축인 재래산양의 유전자원 보존 및 개량에 응용자료로서의 이용에 유용하게 활용할 수 있을 것으로 사료되었다.

적 요

재래산양의 유전자원 보존과 유전적 개량을 위하여 재래산양과 수입산양의 genomic DNA의 유전적 다양성을 분석하기 위하여 수행되었으며 재래 산양육과 수입산양의 유전적 분석은 RAPD 기법을 이용하였으며 공시품종은 재래산양 30두, 재래산양 교잡종 10두, 수입산양 10두를 이용하였다. 재래 산양육과 수입 산양육의 관계를 위한 사료는 재래 산양육 10두와 수입 산양육 10두를 이용하였다. 이들로부터 얻어진 결과를 요약하면 다음과 같다.

1. 재래산양, 수입산양 및 재래산양 교잡종으로부터 추출된 genomic DNA는 전기영동에 의해 약 23kb 크기의 DNA를 얻을 수 있었으며 UV spectrophotometer를 이용하여 흡광도 A 260과 A 280의 비율로 측정한 결과, 그 비율이 1.75~2.10의 범위로 순도는 비교적 양호한 결과를 얻었다.

2. 순수 재래산양의 유전자원의 보존을 위한 재래산양의 유전자 감식여부를 탐색하기 위하여 약 110 여종의 random primer를 이용한 RAPD 기법에 의하여 재래산양, 수입산양 및 교잡종의 다양성을 분석한 결과 random primer OPO-19 (5’-CAA ACG TCG G-3’)를 이용하였을 때 재래산양에서만 396bp에서 band가 나타났으며 수입산양과 교잡종에서는 band가 나타나지 않았다.

3. 또한, 재래 산양육과 수입 산양육의 유전적 차이를 구별하기 위한 RAPD 기법에 의한 genomic DNA의 다양성을 분석해서도 random primer OPO-19(5’-CAA ACG TCG G-3’)를 사용하였을 때 396bp에서 재래 산양육에서는 band가 나타났지만, 수입 산양육에서는 band가 나타나지 않았다.

인용 문헌