An Experimental Study on the Required Performances of Roof Concrete Placed in the In-ground LNG Storage Tank

Yeong-Ho Kwon

Dept. of Architecture and Fire Service Administration, Dong Yang University, Youngju 750-801, Korea

ABSTRACT This study is to derive from the required performances and the optimum mix proportion of the roof concrete placed in the in-ground LNG storage tank with a capacity of 200000 m³, and propose the actual data for site concrete work. The concrete placing work without sliding and segregation in the fresh concrete condition is very important because the slope of domed roof is varied in the large range by its curvature. Also the control of hydration heat and the strength development at test ages are classified with massive section about 1.4 m thick and considered to the pre-stressing work and removal of air support after concrete placing work. Considering above condition, slump range is selected 100±25 mm under the slope 20° and 150±25 mm over the slope 20° until 60 minutes of elapsed time. Also, the roof concrete is satisfied with compressive strength range including design strength at 91 days (30 MPa), pre-stressing work at 7 days (10 MPa), air support removal work at 21 days (14 MPa). Replacement ratio of limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the optimum mix proportion of the roof concrete used low heat cement limestone powder is determined by confined water ratio test and main design factors include water-cement ratio (W/C), sand-aggregate ratio and dosage of admixture. As test results, the adiabatic temperature rising test is satisfied with its criteria and shown the lower value compared to preceding storage tank (TK-13, 14). These required performances and the optimum mix proportion is to apply the actual construction work.

Keywords : roof slope, pre-stressing, air support, confined water ratio, adiabatic temperature raising test

1. 서론

대동량 지하식 LNG(liquefied natural gas; 액화천연가스) 저장탱크의 주요 구조부는 지하연속벽(slurry wall), 바닥슬래브(bottom slab), 측벽(side wall) 및 지붕(roof)으로 나누어져며, 대부분 벽 콘크리트 구조물로 설계된다. 특히, 지붕은 원형의 돌 형태를 갖는 벽 콘크리트 구조물로 지붕 기울기가 곡률에 따라 크게 다르기 때문에, 콘크리트 타설작업에 있어서 시공성 및 충전성, 단계별 재료장도의 교체가 매우 중요한 공정으로 간주된다. 또한, 측벽의 최상단부와 연결되는 돌 형태의 지붕 끝 단면은 두께 1.4 m 정도의 벽 콘크리트 구조물이기 때문에, 수축열 관리도 매우 중요하다.23)}

1) Corresponding author E-mail : kylh00127@hanmail.net

Received January 22, 2013, Revised February 19, 2013, Accepted February 27, 2013
©2013 by Korea Concrete Institute

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

일반적으로 지하식 LNG 저장탱크의 지붕공사 순서는 강재지붕을 바닥슬래브 층에서 조립하고 내면에 보병제를 부착한 후 공기방연공법(air raising method)으로 들어 올리면서 측벽의 정상부에 고정시킨다. 이때, 내압 및 기밀시험으로 강제지붕의 내압성 및 기밀성을 확인한 후에 강제지붕 위에서 철근을 조립한다.

또한, 탱크의 내부부를 송암시켜 강제지붕을 air support 하고 외주에서 내압차 고리모양(ring状)으로 콘크리트의 타설작업을 진행한다.

소정의 기간동안 콘크리트의 양성을 실시한 후에 정상부에 배치된 PC tendon(긴장장)으로 프리스트레스 응력을 도입한다. 프리스트레스를 도입한 후에 탱크의 내압을 감압하여, 콘크리트의 표면을 우레탄 방수 등으로 전면피복하면 지붕의 공장이 끝나게 된다.4)}

이런 공정에 타설되는 지붕 콘크리트의 요구성능은 돌의 경사구배에 따른 시공성 및 충전성, 그리고 단계별 초기강도 발현의 조건을 만족해야 한다.5) 국내에서의 적
용사례를 보면, 한국가스공사의 평택, 동영, 인천기지에 10~14만 m³ 용량의 지상식 LNG 저장탱크가 건설·가동 중에 있으며, 최근에는 삼척기지에 20~27만 m³의 지상식 LNG 저장탱크가 건설되고 있다. 그러나 20만 m³의 지하식 LNG 저장탱크의 지층 콘크리트에 관한 연구현황은 아직 체계적으로 알려져 있지 않은 실정이다.

따라서, 이 연구에서는 지하식 LNG 저장탱크의 지층 콘크리트에 사용되는 재료특성, 시공성 및 총성능, 강도 발현과 수화열 관리에 적합한 최적 배합조건을 제시하는 것을 목적으로 하며, 이를 위하여 저밀 포트랜드 시멘트 (Belite cement)에 석회석 미분말(Lime stone powder, 이하 LSP)을 내합으로 침여하여 사용하는 방안을 검토하였다.

2. 실험개요 및 배합조건

2.1 배합설계 과정 및 요구성능

동 형태의 지층 콘크리트의 배합설계 과정은 Fig. 1에 나타난 바와 같이, 요구성능은 Table 1과 같다.

2.1.1 압축강도

지층 콘크리트의 설계기준강도는 30 MPa이며, 제조·운반·설치 및 양생 등의 과정에서 발생하는 변동계수(V)를 10%로 가정하였으며, 식 (1)에 따른 항등계수(α)는 1.2로 하였으며, 산정된 배합강도는 36 MPa이다.

\[
\alpha = \frac{1}{1 - 1.64 \times \frac{V}{100}}
\]

(1)

Fig. 2는 지층 콘크리트의 실제 적용용 공정을 고려하여 단계별 재료의 강도발현과 프리스트레칭 작업 및 air support 제거에 소요되는 공정을 나타낸 것이다.

지층 구조물의 프리스트레칭 작업은 지층 콘크리트의 압축강도가 10 MPa에 도달한 후 실시할 수 있으며, 대략 제량 7일 정도가 적당한 것으로 사료된다. 그라우当日 및 양생공정이 7일 정도 소요되며 이러한 공정이 마무리되면, air support를 제거하게 된다. air support를 감압할 때에 요구되는 콘크리트의 압축강도는 14 MPa로 21일 제량을 만족하는 조건으로 하였으며 최종강도 관리제정은 91일로 정하였다.

Air support의 감압으로 인하여 하중을 분담해야 하는 기간 동안에는 강관이나 비계열관 등으로 지층 콘크리트를 보강해야 한다. 또한, 공기압 시험시 이 기간 동안에 실시하게 되는데, 공기압 시험에 요구되는 강도는 설계기준강도와 같다.

Fig. 2에 나타낸 제량 91일 강도발현 곡선은 측벽에 적용된 메스 콘크리트의 실제 강도발현 곡선을 인용한 것 이며, 28일 강도발현 곡선은 일반 콘크리트의 조건에서

<table>
<thead>
<tr>
<th>Measurement items</th>
<th>Target value</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specified design compressive strength (MPa)</td>
<td>30</td>
<td>KS F 2405 91 days (Ø100×200 mm)</td>
</tr>
<tr>
<td>Required compressive strength (MPa)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Slump (mm)</td>
<td>100±25(1)</td>
<td>1)Slope < 20°</td>
</tr>
<tr>
<td></td>
<td>150±25(2)</td>
<td>2)Slope ≥ 20°</td>
</tr>
<tr>
<td>Air contents (%)</td>
<td>5.0±1.0</td>
<td></td>
</tr>
<tr>
<td>Chloride contents (kg/m³)</td>
<td>Max. 0.3</td>
<td>KS F 4009</td>
</tr>
</tbody>
</table>

Fig. 2 Actual data and the required concrete strength

Table 1 Required performances of the roof concrete

Fig. 1 The Optimum mix design procedure of roof concrete

340 | 한국콘크리트학회 논문집 제25권 제3호 (2013)
기대되는 강도발현 경향을 나타낸 것이다.9)
제19일까지의 단계별 강도발현 성장은 대부분 지붕
콘크리트에 요구되는 강도를 만족하고 있는 것으로 나타
났다. 28일 관리재료에 비하여 29일 관리재료의 압축강도
를 채택하게 되면, 단위시멘트량의 저감을 통하여 경제성
및 수하량 저감효과를 얻을 수 있기 때문에 균열억제를
위한 효과적인 방안이 될 수 있을 것으로 사료된다.9)

2.63 KS L
1.1
54.8
0.01
58.1
KS F
1.9
2.0
0.66
26.2
08:30
1.10
3.8
O.K
32.2
68.7
KS F
0.1
16.5

21.2 슬럼프
지붕에 사용되는 콘크리트는 기본적으로 군지 않은 상
태에서 커버릴러, 재료분리 저항성 등을 포함한 만족
질기가 확보되어야 하는 동시에 두께 지붕의 경사기
울기, 용접시간, 기온과 바람 및 수하설 제어 등에 관해
서도 함께 고려하여야 한다.
지하식 LNG 저장탱크의 단면도 및 지붕의 시공조건은
Fig. 3에 나타난 바와 같이 경사구배에 따라 단부에서 중
양부까지 콘크리트의 타설 두께가 1.4~0.6 m로 되어있기
때문에, 콘크리트의 시공상 충전성이 요구된다.
일반적으로 경사구배가 20° 이상인 콘크리트에는 전동
거주점을 설치하지만, 거주점 설치에 따른 공사기간 및
공사비 상승, 거주점 폐의 콘크리트 품질 등의 문제를 발
생할 수 있기 때문에 표중의 처짐방지 용접철망의 사
용을 고려하였다.10)
따라서, 이 연구에서는 콘크리트의 슬럼프는 지붕의 경
사각을 20° 미만에서 100±25 mm, 20° 이상에서는 150±
25 mm로 범위를 정하였다. 또한, 경사 변화에 따른 슬럼
프 손실을 고려하여 경사변화 60분까지 슬럼프를 유지하
는 것으로 하였다.11)

2.1.3 공기방
지붕 콘크리트는 KS F 4009에 규정된 일반 콘크리트
로 분류되지만, LNG 저장탱크의 압화온도(-162°C)를 고
려하여 동결용해 저항성을 향상시킨다는 측면에서 군지
 않은 콘크리트의 공기방을 5.0±1.0%로 관리하도록 하였다.

2.2 사용재료
2.2.1 시멘트
콘크리트의 요구성능 및 수하설을 고려하여 저연 포름
랜드 시멘트(4중 Belite cement)를 선정하였으며, 시험 결
과는 Table 2와 같이 KS L 5201 규준을 만족하였다.

2.2.2 물재
완공일은 강로내, 군은물해는 20 mm 셋식으로, 특성시
험 결과는 Table 3에 나타낸 바와 같이 KS F 2526 규준
을 만족하였다.

2.2.3 고성능 AE감수제
고성능 AE감수제는 폴리-카르본계로 특성시험 결과는
Table 4와 같이 ASTM C 494의 규준을 만족하였다.

Table 2(a) Chemical composition of the belite cement

<table>
<thead>
<tr>
<th>Component (%)</th>
<th>SO₃</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>C₃S</th>
<th>C₃S</th>
<th>C₄AF</th>
<th>Loss Ig. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max.</td>
<td>1.7</td>
<td>2.0</td>
<td>3.8</td>
<td>26.2</td>
<td>54.8</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>KS L 5201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2(b) Physical properties of the belite cement

<table>
<thead>
<tr>
<th>Property</th>
<th>Setting time (Gilmore)</th>
<th>Comp. strength (MPa)</th>
<th>Hydration heat (cal/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclave expansion (%)</td>
<td>Initial (min) Final (hr)</td>
<td>7 days 28 days</td>
<td>7 days 28 days</td>
</tr>
<tr>
<td>Max. 0.03</td>
<td>300 08:30</td>
<td>16.5 32.2</td>
<td>58.1 68.7</td>
</tr>
<tr>
<td>KS L 5201</td>
<td></td>
<td>7 days 28 days</td>
<td></td>
</tr>
</tbody>
</table>

Table 3(a) Test results of the fine aggregate

<table>
<thead>
<tr>
<th>FM</th>
<th>Absorption ratio (%)</th>
<th>Density (g/m³)</th>
<th>Sound ness (%)</th>
<th>Organic Impurities (%)</th>
<th>Chloride content (%)</th>
<th>Passing 0.08 mm (%)</th>
<th>Re-mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.67</td>
<td>1.10</td>
<td>2.60</td>
<td>4.1</td>
<td>O.K</td>
<td>0.01</td>
<td>1.1</td>
<td>KS F 2526</td>
</tr>
<tr>
<td>-</td>
<td>Max. 3.0</td>
<td>Min. 2.50</td>
<td>Max. 10.0</td>
<td>Lighter than ST</td>
<td>Max. 0.04</td>
<td>Max. 5.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 3(b) Test results of the coarse aggregate

<table>
<thead>
<tr>
<th>FM</th>
<th>Absorption ratio (%)</th>
<th>Density (g/m³)</th>
<th>Clay lumps (%)</th>
<th>Abrasion ratio (%)</th>
<th>Passing 0.08 mm (%)</th>
<th>Re-mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.57</td>
<td>0.66</td>
<td>2.63</td>
<td>4.6</td>
<td>0.01</td>
<td>20.8</td>
<td>0.1</td>
</tr>
<tr>
<td>-</td>
<td>Max. 3.0</td>
<td>Min. 2.50</td>
<td>Max. 12.0</td>
<td>Max. 1.0</td>
<td>Max. 0.04</td>
<td>Max. 5.0</td>
</tr>
</tbody>
</table>
Table 4 Test results of the high-range water reducing admixture

<table>
<thead>
<tr>
<th>Water content (%)</th>
<th>Setting time (hr: min)</th>
<th>Compressive strength ratio (%)</th>
<th>Flexural strength ratio (%)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>81.0</td>
<td>Initial: 30, Final: 20</td>
<td>124</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>Max. 88</td>
<td>Min. 115, 110</td>
<td>Min. 100</td>
<td>Min. 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM C494</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 Test results of the lime stone powder

<table>
<thead>
<tr>
<th>Density (g/m³)</th>
<th>Moisture content (%)</th>
<th>Blaine (sieve size: μm)</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.61</td>
<td>0.06</td>
<td>-</td>
<td>JIS A 5008</td>
</tr>
<tr>
<td>Min. 2.60</td>
<td>Max. 1.0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 Mixing condition for the roof concrete

<table>
<thead>
<tr>
<th>Classification</th>
<th>Mixing condition</th>
<th>KS F 4009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. size of coarse aggregate (mm)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Water-binder ratio (W/B) (%)</td>
<td>Max. 55</td>
<td></td>
</tr>
<tr>
<td>Unit water content (W) (kg/m³)</td>
<td>Max. 175</td>
<td></td>
</tr>
<tr>
<td>Unit binder content (B) (kg/m³)</td>
<td>Min. 270</td>
<td></td>
</tr>
<tr>
<td>Sand-aggregate ratio (S/a) (%)</td>
<td>Max. 55</td>
<td></td>
</tr>
<tr>
<td>Dosage of HRWR agent (%)</td>
<td>Max. B×3.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 7 Basic mix condition for roof concrete

<table>
<thead>
<tr>
<th>W/B (%)</th>
<th>W/C (%)</th>
<th>S/a (%)</th>
<th>Unit weight materials (kg/m³)</th>
<th>Water</th>
<th>Cement</th>
<th>LSP</th>
<th>Sand</th>
<th>Gravel</th>
<th>Ad</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.4</td>
<td>62</td>
<td>41</td>
<td>155</td>
<td>250</td>
<td>107</td>
<td>721</td>
<td>1049</td>
<td>2.32</td>
<td></td>
</tr>
</tbody>
</table>

Table 8 Test ranges of mix design factors

<table>
<thead>
<tr>
<th>W/B (%)</th>
<th>W/C (%)</th>
<th>S/a (%)</th>
<th>Replacement ratio of lime stone powder (C×%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.4</td>
<td>54.2, 57.8, 62.0</td>
<td>41.0, 43.0, 45.0</td>
<td>0, 15, 30, 45</td>
</tr>
</tbody>
</table>

2.3 배합조건 및 시험변수

이 연구의 지붕 콘크리트의 배합조건은 Table 6과 같다. 또한, 지하석 LNG 저장탱크의 마감슬래브 및 층벽에 사용되는 콘크리트의 기본배합은 Table 7과 같이 정하였다.

지붕 콘크리트의 요구 성능에 적합한 최적배합조건을 도출하기 위한 배합변수의 범위는 Table 8과 같다. 이때, 콘크리트의 배합방법은 60 L 용량의 가정식 믹서(44 rpm)를 사용하였으며, Fig. 4와 같이 콘크리트 재료의 건전비를 포함하여 배합시간은 3분(180초)으로 하였다.

지붕 콘크리트의 최적배합을 도출하기 위한 변수는 물-시멘트비 3 cases 및 잔물질제품 3 cases, 그리고 석회석 미분말의 구속수비 시험을 위한 하중율을 4 cases로 설정하였으며, 이에 따른 콘크리트의 배합시험 및 단열온도 상승시험을 실시하고 그 결과를 분석하였다.

3. 실험 결과 및 분석

3.1 석회석 미분말의 구속수비 결과 분석

석회석 미분말의 하중율에 따른 구속수비들의 특성을 확인하기 위하여 절연 포틀랜드 시멘트의 내장 0, 15, 30 및 45%를 하중하여 구속수비 시험을 실시하였으며, 시험 결과는 Fig. 5와 같다.

실험 결과, 석회석 미분말의 하중율이 증가함수록 구속수비가 증가하는 경향을 나타내었지만 15% 이상에서만 높아졌고, 15% 이상에서만 높아졌다. 변형계수는 하중율에 관계없이 일정한 값(0.078)을 나타내었다. 따라서, 석회석 미분말의 하중시험은 15~45% 범위에서 시험 성공, 강도발현 및 수화열 저감 등을 고려하여 정해야 한다.

3.2 물-시멘트비에 따른 결과분석

Table 8의 결과에 대한 분석

Table 1에 제시된 지붕 콘크리트의 요구성능을 만족해야 하고 특히 층벽의 최상단(9Lot)의 프리스트레싱 블록

342 | 한국콘크리트학회 논문집 제25권 제3호 (2013)
아니라 air support의 제거 등을 고려하여 압축강도 발현 이 매우 중요하다. 따라서, 층벽 콘크리트와 비교하여 7일 제량의 압축강도를 항상시키는 방안으로 Table 9와 같은 배합조건의 물-사멘트비에 따른 실험을 실시하였다.
물-사멘트비에 따른 슬립프 및 공기량은 각각 150~135 mm(150±25 mm 기준) 및 5.8~4.5%(5±1% 기준)로 요구성능에서 정한 범위를 만족하였으며, 재량별 압축강도 결과는 Fig. 6과 같다.

실험 결과, 대부분의 물-사멘트비에서 Fig. 2에서 요구하는 지방 콘크리트의 재량강도를 만족하였다. 따라서, 층벽의 콘크리트 압축강도, 강도발현의 안정성, 경계성 및 수확률 등을 고려하여 물-사멘트비 57.8%를 최적 조건으로 선정하였다.

3.3 전골재율에 따른 결과 분석

단계별 지방 콘크리트의 강도발현 성공 외에도 슬립프의 경사변화 및 적절한 위키킬리터, 경계성 등을 확인하기 위하여 Table 10과 같은 배합조건으로 전골재율(S/a)에 따른 실험을 실시하였다.

<table>
<thead>
<tr>
<th>Table 9 Mix design conditions according to W/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/C (%)</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>62.0</td>
</tr>
<tr>
<td>57.8</td>
</tr>
<tr>
<td>54.2</td>
</tr>
</tbody>
</table>

() : Replacement ratio of lime stone powder

3.4 최적배합조건에 따른 결과 분석

지붕의 경사구배에 따른 슬립프를 고려한 지방 콘크리트의 최적배합 조건은 Table 11과 같다.
고성능 AE감수제의 사용량은 신체적 및 석회성 미분말의 중량비를 나타낸 것이다. 지붕 콘크리트의 최적배합 조건에 따른 슬립프 및 공기량의 경사변화 특성 실험 결과는 Fig. 9 및 10에 나타난 바와 같다.

<table>
<thead>
<tr>
<th>Table 10 Mix design conditions according to S/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/C (%)</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>41.0</td>
</tr>
<tr>
<td>43.0</td>
</tr>
<tr>
<td>45.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 11 Optimum mix proportion conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. (slump)</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>150±25</td>
</tr>
<tr>
<td>100±25</td>
</tr>
</tbody>
</table>
3.5 단열온도 상승시험에 따른 결과 분석

지붕 콘크리트와 같은 마스 구조물의 온도응용을 분석하기 위하여 선정된 최적배합 조건에 대하여 단열온도 상승시험 및 압축강도시험, 반성계수시험을 실시하였으며, 결과는 Fig. 12 및 Table 12에 나타난 바와 같다.

실험 결과, 풀시멘트비에 따라 육안의 차이는 있지만, 저열 포틀랜드 시멘트와 석회석 미분말을 사용하였기 때문에 단열온도 상승양도 상이함(\(Q_\infty\)) 및 상승속도(\(\alpha\))가 낮게 나타났다. 또한, 선행연구의 시공사례와 비교해 볼 때, 선행 연구의 단열온도 상승양(42.9°C)보다 낮은 실험 결과를 나타내었는데, 이는 저열 포틀랜드 시멘트의 수화반응에 기여하는 C3A와 C3S 그리고 C3S 성분의 함량 및 석회석 미분말의 촉활율(대략 25%)의 영향도 큰 것으로 사료된다.

4. 결 론

이 연구에서는 저열 포틀랜드 시멘트 및 석회석 미분말을 사용한 저하식 LNG 지상탱크의 지붕 콘크리트의 요구성능에 대한 콘크리트의 최적배합 조건을 실험적으로 고찰하였으며, 결론을 정리하면 다음과 같다.

1) 강도시험 결과, 공기부양공법(air raising method)으로 조립하는 강재지붕의 프리스트레칭 작업에 요구되는 지붕 콘크리트 7일 재령강도(10 MPa 이상)와 air support의 제거공정을 고려한 21일 재령강도(14 MPa 이상)를 만족하는 것으로 나타났다.

Table 12 Test results of adiabatic temperature

<table>
<thead>
<tr>
<th>(Q_\infty) (°C)</th>
<th>Test results of ages (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp.</td>
<td>Strength and (E_t)</td>
</tr>
<tr>
<td>26.3 0.58</td>
<td>3 days</td>
</tr>
<tr>
<td>Comp.</td>
<td>9.6</td>
</tr>
<tr>
<td>Tensile</td>
<td>1.03</td>
</tr>
<tr>
<td>(E_t) (×10^6)</td>
<td>1.64</td>
</tr>
</tbody>
</table>
2) 슬립프 실험 결과, 돗 형태 지붕의 경사기술기에 따라 20°미만에서의 슬립프 관리기준(100±25 mm) 및 20°이 상에서의 슬립프 관리기준(150±25 mm)을 만족하는 것으로 나타났다.

3) 석화식 미분말의 치환율은 레이스터의 구조수비 및 콘크리트의 충전성, 강도발현, 수화열 저감 등을 고려하여 저열 포털랜드 시멘트의 내합 25%로 하는 것이 가장 바람직하다.

4) 지붕 공사의 단계별 공정에 따른 콘크리트의 강도발현 및 경사구께에 따른 서공성, 충전성을 고려하여 최적배합 조건은 물-시멘트비 57.8%, 잔돌재율 42%가 가장 적합한 것으로 확인되었다. 또한, 슬립프 및 공기압은 경사변화 60분까지 요구성능을 만족하였다.

5) 단열온도 상승시험 결과, 단열온도 상승량은 26.3°C로 실영행(TK-13,14)에 비하여 매우 낮은 것으로 나타났으며, 이는 저열 포털랜드 시멘트 및 석화식 미분말의 사용에 따른 저감효과로 사료된다.

References

요 약 이 연구는 200000 m³의 용량을 갖는 지하식 LNG 저장탱크의 지붕 콘크리트에 대한 요구성능 및 이에 따른 콘크리트의 최적배합비를 도출하고, 현장공사의 자료로 재현하기 위한 것이다. 지붕 콘크리트는 돗형 지붕의 경사기술기에 따라 군지 않은 콘크리트의 시공성 및 충전성이 요구된다. 또한, 1.4-0.6 m의 지붕두께를 고려한 수화열 저감과 콘크리트 타설 후의 프리스트레스 작업 및 air support 제거공정에 따른 단계별 압축강도의 확보가 중요한 요구성능이다. 이러한 조건을 고려하여 지붕의 기울기가 20° 미만일 경우에는 슬립프 100±25 mm, 20° 이상일 경우에는 150±25 mm로 설정하였으며, 경사변화 60분을 만족해야 한다. 특히, 91일 제조의 설계기준강도 50 MPa, 프리스테레스 작업시 7일 제조의 압축강도 10 MPa, air support 제거공정에서 21일 제조의 압축강도 14 MPa를 만족해야 한다. 석화식 미분말의 최적 치환율은 구조시험 결과에 따라 정하였으며, 주요 배합변수는 물-시멘트비, 잔돌재율 및 고성능 AE감수제의 첨가율 등이다. 베팅시험 결과, 저열 포털랜드 시멘트 및 석화식 미분말을 사용한 지붕 콘크리트의 최적배합 조건은 석화식 미분말의 최적 치환율 25%내환, 물-시멘트비 57.8%, 잔돌재율 42.0%로 나타났으며, 공기압 및 슬립프의 시험결과로 경사변화 60분까지 성능을 만족하였다. 또한, 단열온도 상승시험의 결과, 단열온도 상승량 (%O)이 26.3°C, 상승속도(Δγ) 0.58로 실영행(TK-13,14)과 비교해 볼 때 매우 낮게 나타난 수화열 저감의 효과를 기대할 수 있다. 이러한 요구성능 및 최적배합 조건을 만족하는 설계기준강도 30 MPa(배합강도 36 MPa)의 지하식 LNG 저장탱크의 지붕 콘크리트용으로 제안하였다.

역설명어 : 지붕 기울기, 프리스트레스, air support, 구조수비, 단열온도 상승량

지하식 LNG 저장탱크의 지붕 콘크리트의 요구성능에 관한 실험적 연구 | 345